/* * Copyright (c) 2002-2013 Stephen Williams (steve@icarus.com) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ # include "config.h" # include "netlist.h" # include "netenum.h" # include "netclass.h" # include "netdarray.h" # include "compiler.h" # include "netmisc.h" # include # include "ivl_assert.h" NetExpr::NetExpr(unsigned w) : net_type_(0), width_(w), signed_flag_(false) { } NetExpr::NetExpr(ivl_type_t t) : net_type_(t), width_(0), signed_flag_(false) { } NetExpr::~NetExpr() { } ivl_type_t NetExpr::net_type() const { return net_type_; } void NetExpr::cast_signed(bool flag) { cast_signed_base_(flag); } bool NetExpr::has_width() const { return true; } /* * the grand default data type is a logic vector. */ ivl_variable_type_t NetExpr::expr_type() const { if (net_type_) return net_type_->base_type(); else return IVL_VT_LOGIC; } const netenum_t*NetExpr::enumeration() const { return 0; } NetEArrayPattern::NetEArrayPattern(ivl_type_t lv_type, vector&items) : NetExpr(lv_type), items_(items) { } NetEArrayPattern::~NetEArrayPattern() { for (size_t idx = 0 ; idx < items_.size() ; idx += 1) delete items_[idx]; } /* * Create an add/sub node from the two operands. */ NetEBAdd::NetEBAdd(char op__, NetExpr*l, NetExpr*r, unsigned wid, bool signed_flag) : NetEBinary(op__, l, r, wid, signed_flag) { } NetEBAdd::~NetEBAdd() { } ivl_variable_type_t NetEBAdd::expr_type() const { if (left_->expr_type() == IVL_VT_REAL) return IVL_VT_REAL; if (right_->expr_type() == IVL_VT_REAL) return IVL_VT_REAL; return IVL_VT_LOGIC; } /* * Create a comparison operator with two sub-expressions. */ NetEBComp::NetEBComp(char op__, NetExpr*l, NetExpr*r) : NetEBinary(op__, l, r, 1, false) { } NetEBComp::~NetEBComp() { } bool NetEBComp::has_width() const { return true; } ivl_variable_type_t NetEBComp::expr_type() const { // Case compare always returns BOOL if (op() == 'E' || op() == 'N') return IVL_VT_BOOL; if (left()->expr_type() == IVL_VT_LOGIC) return IVL_VT_LOGIC; if (right()->expr_type() == IVL_VT_LOGIC) return IVL_VT_LOGIC; return IVL_VT_BOOL; } NetEBDiv::NetEBDiv(char op__, NetExpr*l, NetExpr*r, unsigned wid, bool signed_flag) : NetEBinary(op__, l, r, wid, signed_flag) { } NetEBDiv::~NetEBDiv() { } ivl_variable_type_t NetEBDiv::expr_type() const { if (left_->expr_type() == IVL_VT_REAL) return IVL_VT_REAL; if (right_->expr_type() == IVL_VT_REAL) return IVL_VT_REAL; return IVL_VT_LOGIC; } NetEBMinMax::NetEBMinMax(char op__, NetExpr*l, NetExpr*r, unsigned wid, bool signed_flag) : NetEBinary(op__, l, r, wid, signed_flag) { } NetEBMinMax::~NetEBMinMax() { } ivl_variable_type_t NetEBMinMax::expr_type() const { if (left_->expr_type() == IVL_VT_REAL) return IVL_VT_REAL; if (right_->expr_type() == IVL_VT_REAL) return IVL_VT_REAL; return IVL_VT_LOGIC; } NetEBMult::NetEBMult(char op__, NetExpr*l, NetExpr*r, unsigned wid, bool signed_flag) : NetEBinary(op__, l, r, wid, signed_flag) { } NetEBMult::~NetEBMult() { } ivl_variable_type_t NetEBMult::expr_type() const { if (left_->expr_type() == IVL_VT_REAL) return IVL_VT_REAL; if (right_->expr_type() == IVL_VT_REAL) return IVL_VT_REAL; return IVL_VT_LOGIC; } NetEBPow::NetEBPow(char op__, NetExpr*l, NetExpr*r, unsigned wid, bool signed_flag) : NetEBinary(op__, l, r, wid, signed_flag) { } NetEBPow::~NetEBPow() { } ivl_variable_type_t NetEBPow::expr_type() const { if (right_->expr_type() == IVL_VT_REAL) return IVL_VT_REAL; if (left_->expr_type() == IVL_VT_REAL) return IVL_VT_REAL; return IVL_VT_LOGIC; } NetEBShift::NetEBShift(char op__, NetExpr*l, NetExpr*r, unsigned wid, bool signed_flag) : NetEBinary(op__, l, r, wid, signed_flag) { } NetEBShift::~NetEBShift() { } bool NetEBShift::has_width() const { return left_->has_width(); } NetEConcat::NetEConcat(unsigned cnt, unsigned r, ivl_variable_type_t vt) : parms_(cnt), repeat_(r), expr_type_(vt) { expr_width(0); } NetEConcat::~NetEConcat() { for (unsigned idx = 0 ; idx < parms_.size() ; idx += 1) delete parms_[idx]; } ivl_variable_type_t NetEConcat::expr_type() const { return expr_type_; } bool NetEConcat::has_width() const { return true; } void NetEConcat::set(unsigned idx, NetExpr*e) { assert(idx < parms_.size()); assert(parms_[idx] == 0); parms_[idx] = e; expr_width( expr_width() + repeat_ * e->expr_width() ); } NetEConstEnum::NetEConstEnum(NetScope*s, perm_string n, const netenum_t*eset, const verinum&v) : NetEConst(v), scope_(s), enum_set_(eset), name_(n) { assert(has_width()); } NetEConstEnum::~NetEConstEnum() { } const netenum_t*NetEConstEnum::enumeration() const { return enum_set_; } NetECReal::NetECReal(const verireal&val) : value_(val) { expr_width(1); cast_signed_base_(true); } NetECReal::~NetECReal() { } const verireal& NetECReal::value() const { return value_; } bool NetECReal::has_width() const { return true; } ivl_variable_type_t NetECReal::expr_type() const { return IVL_VT_REAL; } NetECRealParam::NetECRealParam(NetScope*s, perm_string n, const verireal&v) : NetECReal(v), scope_(s), name_(n) { } NetECRealParam::~NetECRealParam() { } perm_string NetECRealParam::name() const { return name_; } const NetScope* NetECRealParam::scope() const { return scope_; } NetENetenum::NetENetenum(const netenum_t*s) : netenum_(s) { } NetENetenum::~NetENetenum() { } const netenum_t* NetENetenum::netenum() const { return netenum_; } NetENew::NetENew(ivl_type_t t) : obj_type_(t), size_(0), init_val_(0) { } NetENew::NetENew(ivl_type_t t, NetExpr*size, NetExpr*init_val) : obj_type_(t), size_(size), init_val_(init_val) { } NetENew::~NetENew() { } ivl_variable_type_t NetENew::expr_type() const { return size_ ? IVL_VT_DARRAY : IVL_VT_CLASS; } NetENull::NetENull() { } NetENull::~NetENull() { } NetEProperty::NetEProperty(NetNet*net, perm_string pnam) : net_(net) { const netclass_t*use_type = dynamic_cast(net->net_type()); assert(use_type); pidx_ = use_type->property_idx_from_name(pnam); ivl_type_t prop_type = use_type->get_prop_type(pidx_); expr_width(prop_type->packed_width()); cast_signed(prop_type->get_signed()); } NetEProperty::~NetEProperty() { } ivl_variable_type_t NetEProperty::expr_type() const { const netclass_t*use_type = dynamic_cast(net_->net_type()); assert(use_type); ivl_type_t prop_type = use_type->get_prop_type(pidx_); return prop_type->base_type(); } NetESelect::NetESelect(NetExpr*exp, NetExpr*base, unsigned wid, ivl_select_type_t sel_type) : expr_(exp), base_(base), sel_type_(sel_type) { expr_width(wid); } NetESelect::~NetESelect() { delete expr_; delete base_; } const NetExpr*NetESelect::sub_expr() const { return expr_; } const NetExpr*NetESelect::select() const { return base_; } ivl_select_type_t NetESelect::select_type() const { return sel_type_; } ivl_variable_type_t NetESelect::expr_type() const { ivl_variable_type_t type = expr_->expr_type(); // Special case: If the sub-expression is an IVL_VT_STRING, // then this node is representing a character select. The // width is the width of a byte, and the data type is BOOL. if (type == IVL_VT_STRING && expr_width()==8) return IVL_VT_BOOL; if (type != IVL_VT_DARRAY) return type; ivl_assert(*this, type == IVL_VT_DARRAY); // Special case: If the expression is a DARRAY, then the // sub-expression must be a NetESignal and the type of the // NetESelect expression is the element type of the arrayed signal. NetESignal*sig = dynamic_cast(expr_); ivl_assert(*this, sig); const netarray_t*array_type = dynamic_cast (sig->sig()->net_type()); ivl_assert(*this, array_type); return array_type->element_type()->base_type(); } bool NetESelect::has_width() const { return true; } NetESFunc::NetESFunc(const char*n, ivl_variable_type_t t, unsigned width, unsigned np) : name_(0), type_(t), enum_type_(0), parms_(np) { name_ = lex_strings.add(n); expr_width(width); } NetESFunc::NetESFunc(const char*n, ivl_type_t rtype, unsigned np) : NetExpr(rtype), name_(0), type_(IVL_VT_NO_TYPE), enum_type_(0), parms_(np) { name_ = lex_strings.add(n); expr_width(rtype->packed_width()); // FIXME: For now, assume that all uses of this constructor // are for the IVL_VT_DARRAY type. Eventually, the type_ // member will go away. if (dynamic_cast(rtype)) type_ = IVL_VT_DARRAY; else if (dynamic_cast(rtype)) type_ = IVL_VT_CLASS; else ivl_assert(*this, 0); } NetESFunc::NetESFunc(const char*n, const netenum_t*enum_type, unsigned np) : name_(0), type_(enum_type->base_type()), enum_type_(enum_type), parms_(np) { name_ = lex_strings.add(n); expr_width(enum_type->packed_width()); } NetESFunc::~NetESFunc() { for (unsigned idx = 0 ; idx < parms_.size() ; idx += 1) if (parms_[idx]) delete parms_[idx]; /* name_ string ls lex_strings allocated. */ } const char* NetESFunc::name() const { return name_; } unsigned NetESFunc::nparms() const { return parms_.size(); } void NetESFunc::parm(unsigned idx, NetExpr*v) { assert(idx < parms_.size()); if (parms_[idx]) delete parms_[idx]; parms_[idx] = v; } const NetExpr* NetESFunc::parm(unsigned idx) const { assert(idx < parms_.size()); return parms_[idx]; } NetExpr* NetESFunc::parm(unsigned idx) { assert(idx < parms_.size()); return parms_[idx]; } ivl_variable_type_t NetESFunc::expr_type() const { return type_; } const netenum_t* NetESFunc::enumeration() const { return enum_type_; } NetEShallowCopy::NetEShallowCopy(NetExpr*arg1, NetExpr*arg2) : arg1_(arg1), arg2_(arg2) { } NetEShallowCopy::~NetEShallowCopy() { } ivl_variable_type_t NetEShallowCopy::expr_type() const { return arg1_->expr_type(); } NetEAccess::NetEAccess(NetBranch*br, ivl_nature_t nat) : branch_(br), nature_(nat) { } NetEAccess::~NetEAccess() { } ivl_variable_type_t NetEAccess::expr_type() const { return IVL_VT_REAL; }