#ifndef __expression_H #define __expression_H /* * Copyright (c) 2011 Stephen Williams (steve@icarus.com) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ # include "StringHeap.h" # include "LineInfo.h" # include class Entity; class Architecture; class ScopeBase; class VType; class ExpName; /* * The Expression class represents parsed expressions from the parsed * VHDL input. The Expression class is a virtual class that holds more * specific derived expression types. */ class Expression : public LineInfo { public: Expression(); virtual ~Expression() =0; // This virtual method handles the special case of elaborating // an expression that is the l-value of a sequential variable // assignment. This generates an error for most cases, but // expressions that are valid l-values return 0 and set any // flags needed to indicate their status as writable variables. virtual int elaborate_lval(Entity*ent, Architecture*arc); // This virtual method probes the expression to get the most // constrained type for the expression. For a given instance, // this may be called before the elaborate_expr method. virtual const VType*probe_type(Entity*ent, Architecture*arc) const; // This virtual method elaborates an expression. The ltype is // the type of the lvalue expression, if known, and can be // used to calculate the type for the expression being // elaborated. virtual int elaborate_expr(Entity*ent, Architecture*arc, const VType*ltype); // Return the type that this expression would be if it were an // l-value. This should only be called after elaborate_lval is // called and only if elaborate_lval succeeded. inline const VType*peek_type(void) const { return type_; } // The emit virtual method is called by architecture emit to // output the generated code for the expression. The derived // class fills in the details of what exactly happened. virtual int emit(ostream&out, Entity*ent, Architecture*arc) =0; // The evaluate virtual method tries to evaluate expressions // to constant literal values. Return true and set the val // argument if the evaluation works, or return false if it // cannot be done. virtual bool evaluate(ScopeBase*scope, int64_t&val) const; // The symbolic compare returns true if the two expressions // are equal without actually calculating the value. virtual bool symbolic_compare(const Expression*that) const; // This method returns true if the drawn Verilog for this // expression is a primary. A containing expression can use // this method to know if it needs to wrap parentheses. This // is somewhat optional, so it is better to return false if // not certain. The default implementation does return false. virtual bool is_primary(void) const; // Debug dump of the expression. virtual void dump(ostream&out, int indent = 0) const =0; protected: void set_type(const VType*); private: const VType*type_; private: // Not implemented Expression(const Expression&); Expression& operator = (const Expression&); }; class ExpUnary : public Expression { public: ExpUnary(Expression*op1); virtual ~ExpUnary() =0; protected: int emit_operand1(ostream&out, Entity*ent, Architecture*arc); void dump_operand1(ostream&out, int indent = 0) const; private: Expression*operand1_; }; /* * This is an abstract class that collects some of the common features * of binary operators. */ class ExpBinary : public Expression { public: ExpBinary(Expression*op1, Expression*op2); virtual ~ExpBinary() =0; const Expression* peek_operand1(void) const { return operand1_; } const Expression* peek_operand2(void) const { return operand2_; } protected: int elaborate_exprs(Entity*, Architecture*, const VType*); int emit_operand1(ostream&out, Entity*ent, Architecture*arc); int emit_operand2(ostream&out, Entity*ent, Architecture*arc); bool eval_operand1(ScopeBase*scope, int64_t&val) const; bool eval_operand2(ScopeBase*scope, int64_t&val) const; void dump_operands(ostream&out, int indent = 0) const; private: Expression*operand1_; Expression*operand2_; }; class ExpArithmetic : public ExpBinary { public: enum fun_t { PLUS, MINUS, MULT, DIV, MOD, REM, POW }; public: ExpArithmetic(ExpArithmetic::fun_t op, Expression*op1, Expression*op2); ~ExpArithmetic(); int emit(ostream&out, Entity*ent, Architecture*arc); virtual bool evaluate(ScopeBase*scope, int64_t&val) const; void dump(ostream&out, int indent = 0) const; private: fun_t fun_; }; class ExpAttribute : public Expression { public: ExpAttribute(ExpName*base, perm_string name); ~ExpAttribute(); inline perm_string peek_attribute() const { return name_; } inline const ExpName* peek_base() const { return base_; } int emit(ostream&out, Entity*ent, Architecture*arc); void dump(ostream&out, int indent = 0) const; private: ExpName*base_; perm_string name_; }; class ExpCharacter : public Expression { public: ExpCharacter(char val); ~ExpCharacter(); int elaborate_expr(Entity*ent, Architecture*arc, const VType*ltype); int emit(ostream&out, Entity*ent, Architecture*arc); bool is_primary(void) const; void dump(ostream&out, int indent = 0) const; char value() const { return value_; } private: char value_; }; /* * This is a special expression type that represents posedge/negedge * expressions in sensitivity lists. */ class ExpEdge : public ExpUnary { public: enum fun_t { NEGEDGE, ANYEDGE, POSEDGE }; public: explicit ExpEdge(ExpEdge::fun_t ty, Expression*op); ~ExpEdge(); inline fun_t edge_fun() const { return fun_; } int emit(ostream&out, Entity*ent, Architecture*arc); void dump(ostream&out, int indent = 0) const; private: fun_t fun_; }; class ExpInteger : public Expression { public: ExpInteger(int64_t val); ~ExpInteger(); int emit(ostream&out, Entity*ent, Architecture*arc); bool is_primary(void) const; bool evaluate(ScopeBase*scope, int64_t&val) const; void dump(ostream&out, int indent = 0) const; private: int64_t value_; }; class ExpLogical : public ExpBinary { public: enum fun_t { AND, OR, NAND, NOR, XOR, XNOR }; public: ExpLogical(ExpLogical::fun_t ty, Expression*op1, Expression*op2); ~ExpLogical(); inline fun_t logic_fun() const { return fun_; } int emit(ostream&out, Entity*ent, Architecture*arc); void dump(ostream&out, int indent = 0) const; private: fun_t fun_; }; /* * The ExpName class represents an expression that is an identifier or * other sort of name. The ExpNameALL is a special case of ExpName * that represents the "all" keyword is contexts that can handle it. */ class ExpName : public Expression { public: explicit ExpName(perm_string nn); ExpName(perm_string nn, Expression*index); ~ExpName(); public: // Base methods int elaborate_lval(Entity*ent, Architecture*arc); const VType* probe_type(Entity*ent, Architecture*arc) const; int elaborate_expr(Entity*ent, Architecture*arc, const VType*ltype); int emit(ostream&out, Entity*ent, Architecture*arc); bool is_primary(void) const; bool evaluate(ScopeBase*scope, int64_t&val) const; bool symbolic_compare(const Expression*that) const; void dump(ostream&out, int indent = 0) const; const char* name() const; private: perm_string name_; Expression*index_; }; class ExpNameALL : public ExpName { public: ExpNameALL() : ExpName(perm_string()) { } public: int elaborate_lval(Entity*ent, Architecture*arc); const VType* probe_type(Entity*ent, Architecture*arc) const; void dump(ostream&out, int indent =0) const; }; class ExpRelation : public ExpBinary { public: enum fun_t { EQ, LT, GT, NEQ, LE, GE }; inline fun_t relation_fun(void) const { return fun_; } public: ExpRelation(ExpRelation::fun_t ty, Expression*op1, Expression*op2); ~ExpRelation(); const VType* probe_type(Entity*ent, Architecture*arc) const; int elaborate_expr(Entity*ent, Architecture*arc, const VType*ltype); int emit(ostream&out, Entity*ent, Architecture*arc); void dump(ostream&out, int indent = 0) const; private: fun_t fun_; }; class ExpUAbs : public ExpUnary { public: ExpUAbs(Expression*op1); ~ExpUAbs(); int emit(ostream&out, Entity*ent, Architecture*arc); void dump(ostream&out, int indent = 0) const; }; class ExpUNot : public ExpUnary { public: ExpUNot(Expression*op1); ~ExpUNot(); int emit(ostream&out, Entity*ent, Architecture*arc); void dump(ostream&out, int indent = 0) const; }; #endif