#ifndef __vvm_vvm_func_H #define __vvm_vvm_func_H /* * Copyright (c) 1998-2000 Stephen Williams (steve@icarus.com) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ #if !defined(WINNT) && !defined(macintosh) #ident "$Id: vvm_func.h,v 1.21 2000/03/13 00:02:34 steve Exp $" #endif # include "vvm.h" /* * Implement the unary NOT operator in the verilog way. This takes a * vector of a certain width and returns a result of the same width. */ template vvm_bitset_t vvm_unop_not(const vvm_bitset_t&p) { vvm_bitset_t result; for (unsigned idx = 0 ; idx < WIDTH ; idx += 1) switch (p[idx]) { case V0: result[idx] = V1; break; case V1: result[idx] = V0; break; default: result[idx] = Vx; } return result; } /* * The unary AND is the reduction AND. It returns a single bit. */ extern vvm_bitset_t<1> vvm_unop_and(const vvm_bits_t&r); extern vvm_bitset_t<1> vvm_unop_nand(const vvm_bits_t&r); /* * The unary OR is the reduction OR. It returns a single bit. */ extern vvm_bitset_t<1> vvm_unop_or(const vvm_bits_t&r); extern vvm_bitset_t<1> vvm_unop_nor(const vvm_bits_t&r); /* * The unary XOR is the reduction XOR. It returns a single bit. */ extern vvm_bitset_t<1> vvm_unop_xor(const vvm_bits_t&r); extern vvm_bitset_t<1> vvm_unop_xnor(const vvm_bits_t&r); // // simple-minded unary minus operator (two's complement) // template vvm_bitset_t vvm_unop_uminus(const vvm_bitset_t&l) { vvm_bitset_t res; res = vvm_unop_not(l); vpip_bit_t carry = V1; for (int i = 0; i < WIDTH; i++) res[i] = add_with_carry(res[i], V0, carry); return res; } /* * Implement the binary AND operator. This is a bitwise and with all * the parameters and the result having the same width. */ template vvm_bitset_t vvm_binop_and(const vvm_bitset_t&l, const vvm_bitset_t&r) { vvm_bitset_t result; for (unsigned idx = 0 ; idx < WIDTH ; idx += 1) result[idx] = l[idx] & r[idx]; return result; } /* * Implement the binary OR operator. This is a bitwise and with all * the parameters and the result having the same width. */ template vvm_bitset_t vvm_binop_or(const vvm_bitset_t&l, const vvm_bitset_t&r) { vvm_bitset_t result; for (unsigned idx = 0 ; idx < WIDTH ; idx += 1) result[idx] = l[idx] | r[idx]; return result; } template vvm_bitset_t vvm_binop_nor(const vvm_bitset_t&l, const vvm_bitset_t&r) { vvm_bitset_t result; for (unsigned idx = 0 ; idx < WIDTH ; idx += 1) result[idx] = v_not(l[idx] | r[idx]); return result; } /* * Implement the binary + operator in the verilog way. This takes * vectors of identical width and returns another vector of same width * that contains the arithmetic sum. Z values are converted to X. */ template vvm_bitset_t vvm_binop_plus(const vvm_bitset_t&l, const vvm_bitset_t&r) { vvm_bitset_t result; vpip_bit_t carry = V0; for (unsigned idx = 0 ; idx < WIDTH ; idx += 1) result[idx] = add_with_carry(l[idx], r[idx], carry); return result; } /* * The binary - operator is turned into + by doing 2's complement * arithmetic. l-r == l+~r+1. The "+1" is accomplished by adding in a * carry of 1 to the 0 bit position. */ template vvm_bitset_t vvm_binop_minus(const vvm_bitset_t&l, const vvm_bitset_t&r) { vvm_bitset_t res; res = vvm_unop_not(r); vpip_bit_t carry = V1; for (unsigned idx = 0 ; idx < WIDTH ; idx += 1) res[idx] = add_with_carry(l[idx], res[idx], carry); return res; } /* * The multiply binary operator takes an A and B parameter and returns * the result in the vpip_bit_t array. The template form arranges for * the right parameters to be passed to the extern form. */ extern void vvm_binop_mult(vpip_bit_t*res, unsigned nres, const vpip_bit_t*a, unsigned na, const vpip_bit_t*b, unsigned nb); template void vvm_binop_mult(vvm_bitset_t&r, const vvm_bitset_t&a, const vvm_bitset_t&b) { vvm_binop_mult(r.bits, WR, a.bits, WA, b.bits, WB); } /* * The binary ^ (xor) operator is a bitwise XOR of equal width inputs * to generate the corresponsing output. */ template vvm_bitset_t vvm_binop_xor(const vvm_bitset_t&l, const vvm_bitset_t&r) { vvm_bitset_t result; for (unsigned idx = 0 ; idx < WIDTH ; idx += 1) result[idx] = l[idx] ^ r[idx]; return result; } template vvm_bitset_t vvm_binop_xnor(const vvm_bitset_t&l, const vvm_bitset_t&r) { vvm_bitset_t result; for (unsigned idx = 0 ; idx < WIDTH ; idx += 1) result[idx] = v_not(l[idx] ^ r[idx]); return result; } /* * the binary 'l' operator is a logic left-shift by the number of positions * indicated by argument r. r is an unsigned integer, which is represented * internally as a 32-bit bitvector. */ template vvm_bitset_t vvm_binop_shiftl(const vvm_bitset_t&l, const vvm_bits_t&r) { vvm_bitset_t result; vvm_u32 s = r.as_unsigned(); for (unsigned idx = 0; idx < WIDTH; idx++) result[idx] = (idx < s) ? V0 : l[idx-s]; return result; } /* * The binary 'r' operator is a logic right-shift by the number of positions * indicated by argument r. r is an unsigned integer, which is represented * internally by a 32-bit bitvector. */ template vvm_bitset_t vvm_binop_shiftr(const vvm_bitset_t&l, const vvm_bits_t&r) { vvm_bitset_t result; vvm_u32 s = r.as_unsigned(); for (unsigned idx = 0; idx < WIDTH; idx++) result[idx] = (idx < (WIDTH-s)) ? l[idx+s] : V0; return result; } /* * Tests for equality are a bit tricky, as they allow for the left and * right subexpressions to have different size. The shorter bitset is * extended with zeros. Also, if there is Vx or Vz anywhere in either * vectors, the result is Vx. */ extern vvm_bitset_t<1> vvm_binop_eq(const vvm_bits_t&l, const vvm_bits_t&r); extern vvm_bitset_t<1> vvm_binop_ne(const vvm_bits_t&l, const vvm_bits_t&r); /* * This function return true if all the bits are the same. Even x and * z bites are compared for equality. */ extern vvm_bitset_t<1> vvm_binop_eeq(const vvm_bits_t&l, const vvm_bits_t&r); extern vvm_bitset_t<1> vvm_binop_nee(const vvm_bits_t&l, const vvm_bits_t&r); /* * This function return true if all the bits are the same. The x and z * bits are don't care, s don't make the result false. */ extern vvm_bitset_t<1> vvm_binop_xeq(const vvm_bits_t&l, const vvm_bits_t&r); /* * This function return true if all the bits are the same. The z * bits are don't care, so don't make the result false. */ extern vvm_bitset_t<1> vvm_binop_zeq(const vvm_bits_t&l, const vvm_bits_t&r); extern vvm_bitset_t<1> vvm_binop_lt(const vvm_bits_t&l, const vvm_bits_t&r); /* * The <= operator takes operands of natural width and returns a * single bit. The result is V1 if l <= r, otherwise V0; */ extern vvm_bitset_t<1> vvm_binop_le(const vvm_bits_t&l, const vvm_bits_t&r); extern vvm_bitset_t<1> vvm_binop_gt(const vvm_bits_t&l, const vvm_bits_t&r); extern vvm_bitset_t<1> vvm_binop_ge(const vvm_bits_t&l, const vvm_bits_t&r); extern vvm_bitset_t<1> vvm_binop_land(const vvm_bits_t&l, const vvm_bits_t&r); extern vvm_bitset_t<1> vvm_binop_lor(const vvm_bits_t&l, const vvm_bits_t&r); extern vvm_bitset_t<1> vvm_unop_lnot(const vvm_bits_t&r); template vvm_bitset_t vvm_ternary(vpip_bit_t c, const vvm_bitset_t&t, const vvm_bitset_t&f) { switch (c) { case V0: return f; case V1: return t; default: return f; } } /* * $Log: vvm_func.h,v $ * Revision 1.21 2000/03/13 00:02:34 steve * Remove unneeded templates. * * Revision 1.20 2000/02/23 04:43:43 steve * Some compilers do not accept the not symbol. * * Revision 1.19 2000/02/23 02:56:56 steve * Macintosh compilers do not support ident. * * Revision 1.18 2000/01/13 06:05:46 steve * Add the XNOR operator. * * Revision 1.17 2000/01/13 03:35:35 steve * Multiplication all the way to simulation. * * Revision 1.16 1999/12/02 03:36:01 steve * shiftl and shiftr take unsized second parameter. */ #endif