/* * Copyright (c) 2008-2021 Stephen Williams (steve@icarus.com) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ # include "vvp_island.h" # include "compile.h" # include "symbols.h" # include "schedule.h" # include # include using namespace std; class vvp_island_tran : public vvp_island { public: void run_island(); void count_drivers(vvp_island_port*port, unsigned bit_idx, unsigned counts[3]); }; enum tran_state_t { tran_disabled, tran_enabled, tran_unknown }; struct vvp_island_branch_tran : public vvp_island_branch { vvp_island_branch_tran(vvp_net_t*en__, bool active_high__, unsigned width__, unsigned part__, unsigned offset__, bool resistive__); void run_test_enabled(); void run_resolution(); void run_output(); vvp_net_t*en; unsigned width, part, offset; bool active_high, resistive; tran_state_t state; }; vvp_island_branch_tran::vvp_island_branch_tran(vvp_net_t*en__, bool active_high__, unsigned width__, unsigned part__, unsigned offset__, bool resistive__) : en(en__), width(width__), part(part__), offset(offset__), active_high(active_high__), resistive(resistive__) { state = en__ ? tran_disabled : tran_enabled; } static inline vvp_island_branch_tran* BRANCH_TRAN(vvp_island_branch*tmp) { vvp_island_branch_tran*res = dynamic_cast(tmp); assert(res); return res; } /* * The run_island() method is called by the scheduler to run the * entire island. We run the island by calling run_resolution() for * all the branches in the island. */ void vvp_island_tran::run_island() { // Test to see if any of the branches are enabled. This loop // tests the enabled inputs for all the branches and caches // the results in the state for each branch. for (vvp_island_branch*cur = branches_ ; cur ; cur = cur->next_branch) { vvp_island_branch_tran*tmp = dynamic_cast(cur); assert(tmp); tmp->run_test_enabled(); } // Now resolve all the branches in the island. for (vvp_island_branch*cur = branches_ ; cur ; cur = cur->next_branch) { vvp_island_branch_tran*tmp = dynamic_cast(cur); assert(tmp); tmp->run_resolution(); } // Now output the resolved values. for (vvp_island_branch*cur = branches_ ; cur ; cur = cur->next_branch) { vvp_island_branch_tran*tmp = dynamic_cast(cur); assert(tmp); tmp->run_output(); } } static void count_drivers_(vvp_branch_ptr_t cur, bool other_side_visited, unsigned bit_idx, unsigned counts[3]) { // First count any value driven into the port associated with // the current endpoint. vvp_net_t*net = cur.port() ? cur.ptr()->b : cur.ptr()->a; vvp_scalar_t bit = island_get_value(net).value(bit_idx); update_driver_counts(bit.value(), counts); // Now handle all the branches attached to that port. vvp_branch_ptr_t idx = cur; do { vvp_island_branch_tran*tmp = BRANCH_TRAN(idx.ptr()); // If this branch represents a tran gate, we count the // value on the other side of the tran (providing it is // enabled) as a single driver. if (tmp->width == 0) { if (tmp->state == tran_enabled) { net = idx.port() ? idx.ptr()->a : idx.ptr()->b; bit = island_get_sent_value(net).value(bit_idx); update_driver_counts(bit.value(), counts); } continue; } // If we get here, this branch is a part select. If we've // just come from the other end of the branch, we're done. if ((idx == cur) && other_side_visited) continue; // If this is the narrow end of the part select, the other // end must include the bit we are interested in. Follow // the branch to collect any drivers on the other side. if (idx.port() == 1) { vvp_branch_ptr_t a_side(tmp, 0); count_drivers_(a_side, true, tmp->offset + bit_idx, counts); continue; } // If we get here, this branch is the wide end of a part // select. If the bit we are interested in is within the // selected part, follow the branch to collect any drivers // on the other side. if ((bit_idx >= tmp->offset) && (bit_idx < tmp->offset+tmp->part)) { vvp_branch_ptr_t b_side(tmp, 1); count_drivers_(b_side, true, bit_idx - tmp->offset, counts); continue; } } while ((idx = next(idx)) != cur); } void vvp_island_tran::count_drivers(vvp_island_port*port, unsigned bit_idx, unsigned counts[3]) { // First we need to find a branch that is attached to the specified // port. Unfortunately there's no quick way to do this. vvp_island_branch*branch = branches_; unsigned side = 0; while (branch) { if (branch->a->fun == port) { side = 0; break; } if (branch->b->fun == port) { side = 1; break; } branch = branch->next_branch; } assert(branch); // Now count the drivers, pushing through the network as necessary. vvp_branch_ptr_t endpoint(branch, side); count_drivers_(endpoint, false, bit_idx, counts); } void vvp_island_branch_tran::run_test_enabled() { vvp_island_port*ep = en? dynamic_cast (en->fun) : 0; // If there is no ep port (no "enabled" input) then this is a // tran branch. Assume it is always enabled. if (ep == 0) { state = tran_enabled; return; } // Get the input that is driving this enable. // SPECIAL NOTE: Try to get the input value from the // *outvalue* of the port. If the enable is connected to a // .port (instead of a .import) then there may be feedback // going on, and we need to be looking at the resolved input, // not the event input. For example: // // tranif1 (pin, X, pin); // // In this case, when we test the value for "pin", we need to // look at the value that is resolved from this // island. Reading the outvalue will do the trick. // // If the outvalue is nil, then we know that this port is a // .import after all, so just read the invalue. vvp_bit4_t enable_val; if (ep->outvalue.size() != 0) enable_val = ep->outvalue.value(0).value(); else if (ep->invalue.size() == 0) enable_val = BIT4_Z; else enable_val = ep->invalue.value(0).value(); switch (enable_val) { case BIT4_0: state = active_high ? tran_disabled : tran_enabled; break; case BIT4_1: state = active_high ? tran_enabled : tran_disabled; break; default: state = tran_unknown; break; } } // The IEEE standard does not specify the behaviour when a tranif control // input is 'x' or 'z'. We use the rules that are given for MOS switches. inline vvp_vector8_t resolve_ambiguous(const vvp_vector8_t&a, const vvp_vector8_t&b, tran_state_t state, unsigned str_map[8]) { assert(a.size() == b.size()); vvp_vector8_t out (a.size()); for (unsigned idx = 0 ; idx < out.size() ; idx += 1) { vvp_scalar_t a_bit = a.value(idx); vvp_scalar_t b_bit = b.value(idx); b_bit = vvp_scalar_t(b_bit.value(), str_map[b_bit.strength0()], str_map[b_bit.strength1()]); if (state == tran_unknown) { switch (b_bit.value()) { case BIT4_0: b_bit = vvp_scalar_t(BIT4_X, b_bit.strength0(), 0); break; case BIT4_1: b_bit = vvp_scalar_t(BIT4_X, 0, b_bit.strength1()); break; default: break; } } out.set_bit(idx, resolve(a_bit, b_bit)); } return out; } static void push_value_through_branches(const vvp_vector8_t&val, list&connections); static void push_value_through_branch(const vvp_vector8_t&val, vvp_branch_ptr_t cur) { vvp_island_branch_tran*branch = BRANCH_TRAN(cur.ptr()); // If the branch is disabled, skip. if (branch->state == tran_disabled) return; unsigned src_ab = cur.port(); unsigned dst_ab = src_ab^1; vvp_net_t*dst_net = dst_ab? branch->b : branch->a; vvp_island_port*dst_port = dynamic_cast(dst_net->fun); vvp_vector8_t old_val = dst_port->value; // If the port on the other side has not yet been visited, // get its input value. if (dst_port->value.size() == 0) dst_port->value = island_get_value(dst_net); // If we don't yet have an initial value for the port, skip. if (dst_port->value.size() == 0) return; // Now resolve the pushed value with whatever values we have // previously collected (and resolved) for the port. if (branch->width == 0) { // There are no part selects. dst_port->value = resolve_ambiguous(dst_port->value, val, branch->state, vvp_switch_strength_map[branch->resistive]); } else if (dst_ab == 1) { // The other side is a strict subset (part select) // of this side. vvp_vector8_t tmp = val.subvalue(branch->offset, branch->part); dst_port->value = resolve(dst_port->value, tmp); } else { // The other side is a superset of this side. vvp_vector8_t tmp = part_expand(val, branch->width, branch->offset); dst_port->value = resolve(dst_port->value, tmp); } // If the resolved value for the port has changed, push the new // value back into the network. if (! dst_port->value.eeq(old_val)) { list connections; vvp_branch_ptr_t dst_side(branch, dst_ab); island_collect_node(connections, dst_side); push_value_through_branches(dst_port->value, connections); } } static void push_value_through_branches(const vvp_vector8_t&val, list&connections) { for (list::iterator idx = connections.begin() ; idx != connections.end() ; ++ idx ) { push_value_through_branch(val, *idx); } } /* * This method resolves the value for a branch recursively. It uses * recursive descent to span the graph of branches, pushing values * through the network until a stable state is reached. */ void vvp_island_branch_tran::run_resolution() { list connections; vvp_island_port*port; // If the A side port hasn't already been visited, then push // its input value through all the branches connected to it. port = dynamic_cast(a->fun); if (port->value.size() == 0) { vvp_branch_ptr_t a_side(this, 0); island_collect_node(connections, a_side); port->value = island_get_value(a); if (port->value.size() != 0) push_value_through_branches(port->value, connections); connections.clear(); } // Do the same for the B side port. Note that if the branch // is enabled, the B side port will have already been visited // when we resolved the A side port. port = dynamic_cast(b->fun); if (port->value.size() == 0) { vvp_branch_ptr_t b_side(this, 1); island_collect_node(connections, b_side); port->value = island_get_value(b); if (port->value.size() != 0) push_value_through_branches(port->value, connections); connections.clear(); } } void vvp_island_branch_tran::run_output() { vvp_island_port*port; // If the A side port hasn't already been updated, send the // resolved value to the output. port = dynamic_cast(a->fun); if (port->value.size() != 0) { island_send_value(a, port->value); port->value = vvp_vector8_t::nil; } // Do the same for the B side port. port = dynamic_cast(b->fun); if (port->value.size() != 0) { island_send_value(b, port->value); port->value = vvp_vector8_t::nil; } } void compile_island_tran(char*label) { vvp_island*use_island = new vvp_island_tran; compile_island_base(label, use_island); } void compile_island_tranif(int sense, char*island, char*pa, char*pb, char*pe, bool resistive) { vvp_island*use_island = compile_find_island(island); assert(use_island); free(island); vvp_net_t*en = NULL; if (pe) { en = use_island->find_port(pe); assert(en); free(pe); } vvp_island_branch_tran*br = new vvp_island_branch_tran(en, sense ? true : false, 0, 0, 0, resistive); use_island->add_branch(br, pa, pb); free(pa); free(pb); } void compile_island_tranvp(char*island, char*pa, char*pb, unsigned wid, unsigned par, unsigned off) { vvp_island*use_island = compile_find_island(island); assert(use_island); free(island); vvp_island_branch_tran*br = new vvp_island_branch_tran(NULL, false, wid, par, off, false); use_island->add_branch(br, pa, pb); free(pa); free(pb); }