/* * Copyright (c) 2011-2021 Stephen Williams (steve@icarus.com) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ # include "architec.h" # include "entity.h" # include "expression.h" # include "sequential.h" # include "subprogram.h" # include # include using namespace std; int Architecture::elaborate(Entity*entity) { int errors = 0; // Constant assignments in the architecture get their types // from the constant declaration itself. Elaborate the value // expression with the declared type. for (map::iterator cur = use_constants_.begin() ; cur != use_constants_.end() ; ++cur) { cur->second->val->elaborate_expr(entity, this, cur->second->typ); } for (map::iterator cur = cur_constants_.begin() ; cur != cur_constants_.end() ; ++cur) { cur->second->val->elaborate_expr(entity, this, cur->second->typ); } // Elaborate initializer expressions for signals & variables for (map::iterator cur = old_signals_.begin() ; cur != old_signals_.end() ; ++cur) { cur->second->elaborate(entity, this); } for (map::iterator cur = new_signals_.begin() ; cur != new_signals_.end() ; ++cur) { cur->second->elaborate(entity, this); } for (map::iterator cur = old_variables_.begin() ; cur != old_variables_.end() ; ++cur) { cur->second->elaborate(entity, this); } for (map::iterator cur = new_variables_.begin() ; cur != new_variables_.end() ; ++cur) { cur->second->elaborate(entity, this); } // Elaborate subprograms for (map::const_iterator cur = cur_subprograms_.begin() ; cur != cur_subprograms_.end() ; ++cur) { const SubHeaderList& subp_list = cur->second; for(SubHeaderList::const_iterator it = subp_list.begin(); it != subp_list.end(); ++it) { errors += (*it)->elaborate(); } } // Create 'initial' and 'final' blocks for implicit // initialization and clean-up actions if(!initializers_.empty()) statements_.push_front(new InitialStatement(&initializers_)); if(!finalizers_.empty()) statements_.push_front(new FinalStatement(&finalizers_)); for (list::iterator cur = statements_.begin() ; cur != statements_.end() ; ++cur) { int cur_errors = (*cur)->elaborate(entity, this); errors += cur_errors; } if (errors > 0) { cerr << errors << " errors in " << name_ << " architecture of " << entity->get_name() << "." << endl; } return errors; } int Architecture::Statement::elaborate(Entity*, Architecture*) { return 0; } int ComponentInstantiation::elaborate(Entity*ent, Architecture*arc) { int errors = 0; ComponentBase*base = arc->find_component(cname_); if (base == 0) { cerr << get_fileline() << ": error: No component declaration" << " for instance " << iname_ << " of " << cname_ << "." << endl; return 1; } arc->set_cur_component(this); for (map::const_iterator cur = generic_map_.begin() ; cur != generic_map_.end() ; ++cur) { // check if generic from component instantiation // exists in the component declaration const InterfacePort*iparm = base->find_generic(cur->first); if (iparm == 0) { cerr << get_fileline() << ": warning: No generic " << cur->first << " in component " << cname_ << "." << endl; continue; } ExpName* tmp; if (cur->second && (tmp = dynamic_cast(cur->second))) errors += tmp->elaborate_rval(ent, arc, iparm); if (cur->second) errors += cur->second->elaborate_expr(ent, arc, iparm->type); } for (map::const_iterator cur = port_map_.begin() ; cur != port_map_.end() ; ++cur) { // check if a port from component instantiation // exists in the component declaration const InterfacePort*iport = base->find_port(cur->first); if (iport == 0) { cerr << get_fileline() << ": error: No port " << cur->first << " in component " << cname_ << "." << endl; errors += 1; continue; } ExpName* tmp; if (cur->second && (tmp = dynamic_cast(cur->second))) errors += tmp->elaborate_rval(ent, arc, iport); /* It is possible for the port to be explicitly unconnected. In that case, the Expression will be nil */ if (cur->second) cur->second->elaborate_expr(ent, arc, iport->type); } arc->set_cur_component(NULL); return errors; } int GenerateStatement::elaborate_statements(Entity*ent, Architecture*arc) { int errors = 0; for (list::iterator cur = statements_.begin() ; cur != statements_.end() ; ++cur) { Architecture::Statement*curp = *cur; errors += curp->elaborate(ent, arc); } return errors; } int ForGenerate::elaborate(Entity*ent, Architecture*arc) { int errors = 0; arc->push_genvar_type(genvar_, lsb_->probe_type(ent, arc)); errors += elaborate_statements(ent, arc); arc->pop_genvar_type(); return errors; } int IfGenerate::elaborate(Entity*ent, Architecture*arc) { int errors = 0; errors += elaborate_statements(ent, arc); return errors; } int StatementList::elaborate(Entity*ent, ScopeBase*scope) { int errors = 0; for (std::list::iterator it = statements_.begin(); it != statements_.end(); ++it) { errors += (*it)->elaborate(ent, scope); } return errors; } int ProcessStatement::elaborate(Entity*ent, Architecture*arc) { int errors = 0; arc->set_cur_process(this); for (map::iterator cur = new_variables_.begin() ; cur != new_variables_.end() ; ++cur) { cur->second->elaborate(ent, arc); } StatementList::elaborate(ent, arc); arc->set_cur_process(NULL); return errors; } int SignalAssignment::elaborate(Entity*ent, Architecture*arc) { int errors = 0; // Elaborate the l-value expression. errors += lval_->elaborate_lval(ent, arc, false); // The elaborate_lval should have resolved the type of the // l-value expression. We'll use that type to elaborate the // r-value. const VType*lval_type = lval_->peek_type(); if (lval_type == 0) { if (errors == 0) { errors += 1; cerr << get_fileline() << ": error: Unable to calculate type for l-value expression." << endl; } return errors; } for (list::iterator cur = rval_.begin() ; cur != rval_.end() ; ++cur) { errors += (*cur)->elaborate_expr(ent, arc, lval_type); } return errors; } int CondSignalAssignment::elaborate(Entity*ent, Architecture*arc) { int errors = 0; // Visitor to extract signal names occurring in the conditional // statements to create the sensitivity list struct name_extractor_t : public ExprVisitor { explicit name_extractor_t(list& name_list) : name_list_(name_list) {} void operator() (Expression*s) { if(const ExpName*name = dynamic_cast(s)) name_list_.push_back(name); } private: list& name_list_; } name_extractor(sens_list_); // Elaborate the l-value expression. errors += lval_->elaborate_lval(ent, arc, true); // The elaborate_lval should have resolved the type of the // l-value expression. We'll use that type to elaborate the // r-value. const VType*lval_type = lval_->peek_type(); if (lval_type == 0) { if (errors == 0) { errors += 1; cerr << get_fileline() << ": error: Unable to calculate type for l-value expression." << endl; } return errors; } for(list::iterator it = options_.begin(); it != options_.end(); ++it) { ExpConditional::case_t*cas = (*it); cas->elaborate_expr(ent, arc, lval_type); cas->visit(name_extractor); } return errors; }