/* * Copyright (c) 2012-2015 Stephen Williams (steve@icarus.com) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ # include "sys_priv.h" # include # include # include # include static PLI_INT32 one_darray_arg_compiletf(ICARUS_VPI_CONST PLI_BYTE8*name) { vpiHandle callh = vpi_handle(vpiSysTfCall, 0); vpiHandle argv; vpiHandle arg; argv = vpi_iterate(vpiArgument, callh); if (argv == 0) { vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh), (int)vpi_get(vpiLineNo, callh)); vpi_printf("%s requires a string argument.\n", name); vpi_control(vpiFinish, 1); return 0; } arg = vpi_scan(argv); if (arg == 0) return 0; arg = vpi_scan(argv); if (arg != 0) { vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh), (int)vpi_get(vpiLineNo, callh)); vpi_printf("%s has too many arguments.\n", name); vpi_control(vpiFinish, 1); return 0; } return 0; } static PLI_INT32 size_calltf(ICARUS_VPI_CONST PLI_BYTE8*name) { vpiHandle callh = vpi_handle(vpiSysTfCall, 0); vpiHandle argv; vpiHandle arg; (void)name; /* Parameter is not used. */ argv = vpi_iterate(vpiArgument, callh); assert(argv); arg = vpi_scan(argv); assert(arg); vpi_free_object(argv); int res = vpi_get(vpiSize, arg); s_vpi_value value; value.format = vpiIntVal; value.value.integer = res; vpi_put_value(callh, &value, 0, vpiNoDelay); return 0; } static PLI_INT32 to_vec_compiletf(ICARUS_VPI_CONST PLI_BYTE8*user_data) { (void) user_data; /* Parameter is not used. */ vpiHandle systf_handle, arg_iterator, arg_handle; PLI_INT32 arg_type[2]; /* obtain a handle to the system task instance */ systf_handle = vpi_handle(vpiSysTfCall, NULL); if (systf_handle == NULL) { vpi_printf("ERROR: $ivl_darray_method$to_vec failed to obtain systf handle\n"); vpi_control(vpiFinish,0); /* abort simulation */ return 0; } /* obtain handles to system task arguments */ arg_iterator = vpi_iterate(vpiArgument, systf_handle); if (arg_iterator == NULL) { vpi_printf("ERROR: $ivl_darray_method$to_vec requires 2 arguments\n"); vpi_control(vpiFinish, 0); return 0; } /* check the type of object in system task arguments */ arg_handle = vpi_scan(arg_iterator); for(int i = 0; i < 2; ++i) { arg_type[i] = vpi_get(vpiType, arg_handle); arg_handle = vpi_scan(arg_iterator); } if (arg_handle != NULL) { /* are there more arguments? */ vpi_printf("ERROR: $ivl_darray_method$to_vec can only have 2 arguments\n"); vpi_free_object(arg_iterator); vpi_control(vpiFinish, 0); return 0; } if ((arg_type[0] != vpiRegArray) || (arg_type[1] != vpiNet && arg_type[1] != vpiReg && arg_type[1] != vpiBitVar)) { vpi_printf("ERROR: $ivl_darray_method$to_vec value arguments must be a dynamic array and a net or reg\n"); vpi_free_object(arg_iterator); vpi_control(vpiFinish, 0); return 0; } return 0; } static PLI_INT32 to_vec_calltf(ICARUS_VPI_CONST PLI_BYTE8*name) { (void)name; /* Parameter is not used. */ const unsigned int PLI_INT32_bits = sizeof(PLI_INT32) * 8; vpiHandle callh = vpi_handle(vpiSysTfCall, 0); vpiHandle argv, darr, darr_word, vec; s_vpi_value darr_val; s_vpi_vecval*vec_val; /* Fetch arguments */ argv = vpi_iterate(vpiArgument, callh); assert(argv); darr = vpi_scan(argv); assert(darr); vec = vpi_scan(argv); assert(vec); vpi_free_object(argv); int darr_length = vpi_get(vpiSize, darr); darr_word = vpi_handle_by_index(darr, 0); int darr_word_bit_size = vpi_get(vpiSize, darr_word); int darr_bit_size = darr_length * darr_word_bit_size; int vec_size = vpi_get(vpiSize, vec); if(darr_length <= 0) { vpi_printf("ERROR: Cannot cast empty dynamic array"); vpi_control(vpiFinish, 0); return 0; } if(vec_size != darr_bit_size) { vpi_printf("ERROR: Dynamic array and vector size do not match"); vpi_control(vpiFinish, 0); return 0; } /* Conversion part */ int vec_number = ceil((double)darr_bit_size / PLI_INT32_bits); vec_val = calloc(vec_number, sizeof(s_vpi_vecval)); int darr_number = ceil((double)darr_word_bit_size / PLI_INT32_bits); darr_val.format = vpiVectorVal; unsigned int offset = 0; s_vpi_vecval*vec_val_ptr = vec_val; vec_val_ptr->aval = 0; vec_val_ptr->bval = 0; /* We have to reverse the order of the dynamic array, no memcpy here */ for(int i = darr_length - 1; i >= 0; --i) { unsigned int bits_to_copy = darr_word_bit_size; darr_word = vpi_handle_by_index(darr, i); vpi_get_value(darr_word, &darr_val); assert(darr_val.value.vector); for(int j = 0; j < darr_number; ++j) { PLI_INT32 aval = darr_val.value.vector->aval; PLI_INT32 bval = darr_val.value.vector->bval; if(offset < PLI_INT32_bits) { vec_val_ptr->aval |= (aval << offset); vec_val_ptr->bval |= (bval << offset); } offset += bits_to_copy > PLI_INT32_bits ? PLI_INT32_bits : bits_to_copy; if(offset >= PLI_INT32_bits) { ++vec_val_ptr; vec_val_ptr->aval = 0; vec_val_ptr->bval = 0; // is the current word crossing the s_vpi_vecval boundary? if(offset > PLI_INT32_bits) { // this assert is to warn you, that the following // part could not be tested at the moment of writing // (dynamic arrays work with vectors of 8, 16, 32, 64 // bits, so there is no chance that one of the vectors // will cross the s_vpi_vecval boundary) // it *may* work, but it is better to check first assert(0); // copy the remainder that did not fit in the previous s_vpi_vecval offset -= PLI_INT32_bits; vec_val_ptr->aval |= (aval >> (darr_word_bit_size - offset)); vec_val_ptr->bval |= (bval >> (darr_word_bit_size - offset)); } else { offset = 0; } } bits_to_copy -= PLI_INT32_bits; darr_val.value.vector++; } } darr_val.format = vpiVectorVal; darr_val.value.vector = vec_val; vpi_put_value(vec, &darr_val, 0, vpiNoDelay); free(vec_val); return 0; } static PLI_INT32 from_vec_compiletf(ICARUS_VPI_CONST PLI_BYTE8*user_data) { (void) user_data; /* Parameter is not used. */ vpiHandle systf_handle, arg_iterator, arg_handle; PLI_INT32 arg_type[2]; /* obtain a handle to the system task instance */ systf_handle = vpi_handle(vpiSysTfCall, NULL); if (systf_handle == NULL) { vpi_printf("ERROR: $ivl_darray_method$from_vec failed to obtain systf handle\n"); vpi_control(vpiFinish,0); /* abort simulation */ return 0; } /* obtain handles to system task arguments */ arg_iterator = vpi_iterate(vpiArgument, systf_handle); if (arg_iterator == NULL) { vpi_printf("ERROR: $ivl_darray_method$from_vec requires 2 arguments\n"); vpi_control(vpiFinish, 0); return 0; } /* check the type of object in system task arguments */ arg_handle = vpi_scan(arg_iterator); for(int i = 0; i < 2; ++i) { arg_type[i] = vpi_get(vpiType, arg_handle); arg_handle = vpi_scan(arg_iterator); } if (arg_handle != NULL) { /* are there more arguments? */ vpi_printf("ERROR: $ivl_darray_method$from_vec can only have 2 arguments\n"); vpi_free_object(arg_iterator); vpi_control(vpiFinish, 0); return 0; } if ((arg_type[1] != vpiNet && arg_type[1] != vpiReg && arg_type[1] != vpiBitVar) || (arg_type[0] != vpiRegArray)) { vpi_printf("ERROR: $ivl_darray_method$from_vec value arguments must be "\ "a net or reg and a dynamic array\n"); vpi_free_object(arg_iterator); vpi_control(vpiFinish, 0); return 0; } return 0; } static PLI_INT32 from_vec_calltf(ICARUS_VPI_CONST PLI_BYTE8*name) { (void)name; /* Parameter is not used. */ const int PLI_INT32_bits = sizeof(PLI_INT32) * 8; vpiHandle callh = vpi_handle(vpiSysTfCall, 0); vpiHandle argv, darr, darr_word, vec; s_vpi_value darr_val, vec_val; s_vpi_vecval*vector; /* Fetch arguments */ argv = vpi_iterate(vpiArgument, callh); assert(argv); darr = vpi_scan(argv); assert(darr); vec = vpi_scan(argv); assert(vec); vpi_free_object(argv); int darr_length = vpi_get(vpiSize, darr); darr_word = vpi_handle_by_index(darr, 0); int darr_word_bit_size = vpi_get(vpiSize, darr_word); int darr_bit_size = darr_length * darr_word_bit_size; int vec_size = vpi_get(vpiSize, vec); if(vec_size <= 0) { vpi_printf("ERROR: Cannot cast empty vector"); vpi_control(vpiFinish, 0); return 0; } if(vec_size != darr_bit_size) { vpi_printf("ERROR: Dynamic array and vector size do not match"); vpi_control(vpiFinish, 0); return 0; } /* Conversion part */ int darr_number = ceil((double)darr_word_bit_size / PLI_INT32_bits); vector = calloc(darr_number, sizeof(s_vpi_vecval)); vec_val.format = vpiVectorVal; vpi_get_value(vec, &vec_val); s_vpi_vecval*darr_val_ptr; int offset = 0; // offset in bits /* We have to reverse the order of the dynamic array, no memcpy here */ for(int i = darr_length - 1; i >= 0; --i) { int bits_to_copy = darr_word_bit_size; darr_word = vpi_handle_by_index(darr, i); assert(darr_val.value.vector); darr_val_ptr = vector; while(bits_to_copy > 0) { int copied_bits = bits_to_copy > PLI_INT32_bits ? PLI_INT32_bits : bits_to_copy; PLI_INT32 aval = vec_val.value.vector[offset / PLI_INT32_bits].aval; PLI_INT32 bval = vec_val.value.vector[offset / PLI_INT32_bits].bval; if(offset % PLI_INT32_bits != 0) { unsigned int rem_bits = offset % 32; aval >>= rem_bits; aval |= vec_val.value.vector[offset / PLI_INT32_bits + 1].aval << (PLI_INT32_bits - rem_bits); bval >>= rem_bits; bval |= vec_val.value.vector[offset / PLI_INT32_bits + 1].bval << (PLI_INT32_bits - rem_bits); } offset += copied_bits; darr_val_ptr->aval = aval; darr_val_ptr->bval = bval; darr_val_ptr++; bits_to_copy -= copied_bits; } darr_val.format = vpiVectorVal; darr_val.value.vector = vector; vpi_put_value(darr_word, &darr_val, 0, vpiNoDelay); } free(vector); return 0; } void sys_darray_register(void) { s_vpi_systf_data tf_data; vpiHandle res; tf_data.type = vpiSysFunc; tf_data.sysfunctype = vpiIntFunc; tf_data.tfname = "$size"; tf_data.calltf = size_calltf; tf_data.compiletf = one_darray_arg_compiletf; tf_data.sizetf = 0; tf_data.user_data = "$size"; res = vpi_register_systf(&tf_data); vpip_make_systf_system_defined(res); tf_data.type = vpiSysTask; tf_data.sysfunctype = 0; tf_data.tfname = "$ivl_darray_method$to_vec"; tf_data.calltf = to_vec_calltf; tf_data.compiletf = to_vec_compiletf; tf_data.sizetf = 0; tf_data.user_data = "$ivl_darray_method$to_vec"; res = vpi_register_systf(&tf_data); vpip_make_systf_system_defined(res); tf_data.type = vpiSysTask; tf_data.sysfunctype = 0; tf_data.tfname = "$ivl_darray_method$from_vec"; tf_data.calltf = from_vec_calltf; tf_data.compiletf = from_vec_compiletf; tf_data.sizetf = 0; tf_data.user_data = "$ivl_darray_method$from_vec"; res = vpi_register_systf(&tf_data); vpip_make_systf_system_defined(res); }