/* * Copyright (c) 2000-2007 Stephen Williams (steve@icarus.com) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ # include "config.h" # include /* * This source file contains all the implementations of the Design * class declared in netlist.h. */ # include "netlist.h" # include "util.h" # include "compiler.h" # include "netmisc.h" # include Design:: Design() : errors(0), nodes_(0), procs_(0), lcounter_(0) { procs_idx_ = 0; des_precision_ = 0; nodes_functor_cur_ = 0; nodes_functor_nxt_ = 0; } Design::~Design() { } string Design::local_symbol(const string&path) { ostringstream res; res << path << "." << "_L" << lcounter_; lcounter_ += 1; return res.str(); } void Design::set_precision(int val) { if (val < des_precision_) des_precision_ = val; } int Design::get_precision() const { return des_precision_; } uint64_t Design::scale_to_precision(uint64_t val, const NetScope*scope) const { int units = scope->time_unit(); assert( units >= des_precision_ ); while (units > des_precision_) { units -= 1; val *= 10; } return val; } NetScope* Design::make_root_scope(perm_string root) { NetScope *root_scope_; root_scope_ = new NetScope(0, hname_t(root), NetScope::MODULE); /* This relies on the fact that the basename return value is permallocated. */ root_scope_->set_module_name(root_scope_->basename()); root_scopes_.push_back(root_scope_); return root_scope_; } NetScope* Design::find_root_scope() { assert(root_scopes_.front()); return root_scopes_.front(); } list Design::find_root_scopes() { return root_scopes_; } const list Design::find_root_scopes() const { return root_scopes_; } /* * This method locates a scope in the design, given its rooted * hierarchical name. Each component of the key is used to scan one * more step down the tree until the name runs out or the search * fails. */ NetScope* Design::find_scope(const std::list&path) const { if (path.empty()) return 0; for (list::const_iterator scope = root_scopes_.begin() ; scope != root_scopes_.end(); scope++) { NetScope*cur = *scope; if (path.front() != cur->fullname()) continue; std::list tmp = path; tmp.pop_front(); while (cur) { if (tmp.empty()) return cur; cur = cur->child( tmp.front() ); tmp.pop_front(); } } return 0; } /* * This is a relative lookup of a scope by name. The starting point is * the scope parameter within which I start looking for the scope. If * I do not find the scope within the passed scope, start looking in * parent scopes until I find it, or I run out of parent scopes. */ NetScope* Design::find_scope(NetScope*scope, const std::list&path, NetScope::TYPE type) const { assert(scope); if (path.empty()) return scope; for ( ; scope ; scope = scope->parent()) { std::list tmp = path; NetScope*cur = scope; do { hname_t key = tmp.front(); /* If we are looking for a module or we are not * looking at the last path component check for * a name match (second line). */ if (cur->type() == NetScope::MODULE && (type == NetScope::MODULE || tmp.size() > 1) && cur->module_name()==key.peek_name()) { /* Up references may match module name */ } else { cur = cur->child( key ); if (cur == 0) break; } tmp.pop_front(); } while (!tmp.empty()); if (cur) return cur; } // Last chance. Look for the name starting at the root. return find_scope(path); } /* * This method runs through the scope, noticing the defparam * statements that were collected during the elaborate_scope pass and * applying them to the target parameters. The implementation actually * works by using a specialized method from the NetScope class that * does all the work for me. */ void Design::run_defparams() { for (list::const_iterator scope = root_scopes_.begin(); scope != root_scopes_.end(); scope++) (*scope)->run_defparams(this); } void NetScope::run_defparams(Design*des) { { NetScope*cur = sub_; while (cur) { cur->run_defparams(des); cur = cur->sib_; } } map::const_iterator pp; for (pp = defparams.begin() ; pp != defparams.end() ; pp ++ ) { NetExpr*val = (*pp).second; pform_name_t path = (*pp).first; perm_string perm_name = peek_tail_name(path); path.pop_back(); list eval_path = eval_scope_path(des, this, path); /* If there is no path on the name, then the targ_scope is the current scope. */ NetScope*targ_scope = des->find_scope(this, eval_path); if (targ_scope == 0) { cerr << val->get_fileline() << ": warning: scope of " << path << "." << perm_name << " not found." << endl; continue; } bool flag = targ_scope->replace_parameter(perm_name, val); if (! flag) { cerr << val->get_fileline() << ": warning: parameter " << perm_name << " not found in " << scope_path(targ_scope) << "." << endl; } } } void Design::evaluate_parameters() { for (list::const_iterator scope = root_scopes_.begin(); scope != root_scopes_.end(); scope++) (*scope)->evaluate_parameters(this); } void NetScope::evaluate_parameters(Design*des) { NetScope*cur = sub_; while (cur) { cur->evaluate_parameters(des); cur = cur->sib_; } // Evaluate the parameter values. The parameter expressions // have already been elaborated and replaced by the scope // scanning code. Now the parameter expression can be fully // evaluated, or it cannot be evaluated at all. typedef map::iterator mparm_it_t; for (mparm_it_t cur = parameters.begin() ; cur != parameters.end() ; cur ++) { long msb = 0; long lsb = 0; bool range_flag = false; NetExpr*expr; /* Evaluate the msb expression, if it is present. */ expr = (*cur).second.msb; if (expr) { NetEConst*tmp = dynamic_cast(expr); if (! tmp) { NetExpr*nexpr = expr->eval_tree(); if (nexpr == 0) { cerr << (*cur).second.expr->get_fileline() << ": internal error: " << "unable to evaluate msb expression " << "for parameter " << (*cur).first << ": " << *expr << endl; des->errors += 1; continue; } assert(nexpr); delete expr; (*cur).second.msb = nexpr; tmp = dynamic_cast(nexpr); } assert(tmp); msb = tmp->value().as_long(); range_flag = true; } /* Evaluate the lsb expression, if it is present. */ expr = (*cur).second.lsb; if (expr) { NetEConst*tmp = dynamic_cast(expr); if (! tmp) { NetExpr*nexpr = expr->eval_tree(); if (nexpr == 0) { cerr << (*cur).second.expr->get_fileline() << ": internal error: " << "unable to evaluate lsb expression " << "for parameter " << (*cur).first << ": " << *expr << endl; des->errors += 1; continue; } assert(nexpr); delete expr; (*cur).second.lsb = nexpr; tmp = dynamic_cast(nexpr); } assert(tmp); lsb = tmp->value().as_long(); assert(range_flag); } /* Evaluate the parameter expression, if necessary. */ expr = (*cur).second.expr; assert(expr); switch (expr->expr_type()) { case IVL_VT_REAL: if (! dynamic_cast(expr)) { NetExpr*nexpr = expr->eval_tree(); if (nexpr == 0) { cerr << (*cur).second.expr->get_fileline() << ": internal error: " << "unable to evaluate real parameter value: " << *expr << endl; des->errors += 1; continue; } assert(nexpr); delete expr; (*cur).second.expr = nexpr; } break; case IVL_VT_LOGIC: case IVL_VT_BOOL: if (! dynamic_cast(expr)) { // Try to evaluate the expression. NetExpr*nexpr = expr->eval_tree(); if (nexpr == 0) { cerr << (*cur).second.expr->get_fileline() << ": internal error: " << "unable to evaluate parameter " << (*cur).first << " value: " << *expr << endl; des->errors += 1; continue; } // The evaluate worked, replace the old // expression with this constant value. assert(nexpr); delete expr; (*cur).second.expr = nexpr; // Set the signedness flag. (*cur).second.expr ->cast_signed( (*cur).second.signed_flag ); } break; default: cerr << (*cur).second.expr->get_fileline() << ": internal error: " << "unhandled expression type?" << endl; des->errors += 1; continue; } /* If the parameter has range information, then make sure the value is set right. */ if (range_flag) { unsigned long wid = (msb >= lsb)? msb - lsb : lsb - msb; wid += 1; NetEConst*val = dynamic_cast((*cur).second.expr); assert(val); verinum value = val->value(); if (! (value.has_len() && (value.len() == wid) && (value.has_sign() == (*cur).second.signed_flag))) { verinum tmp (value, wid); tmp.has_sign ( (*cur).second.signed_flag ); delete val; val = new NetEConst(tmp); (*cur).second.expr = val; } } } } const char* Design::get_flag(const string&key) const { map::const_iterator tmp = flags_.find(key); if (tmp == flags_.end()) return ""; else return (*tmp).second; } /* * This method looks for a signal (reg, wire, whatever) starting at * the specified scope. If the name is hierarchical, it is split into * scope and name and the scope used to find the proper starting point * for the real search. * * It is the job of this function to properly implement Verilog scope * rules as signals are concerned. */ NetNet* Design::find_signal(NetScope*scope, pform_name_t path) { assert(scope); perm_string key = peek_tail_name(path); path.pop_back(); if (! path.empty()) { list eval_path = eval_scope_path(this, scope, path); scope = find_scope(scope, eval_path); } while (scope) { if (NetNet*net = scope->find_signal(key)) return net; if (scope->type() == NetScope::MODULE) break; scope = scope->parent(); } return 0; } NetFuncDef* Design::find_function(NetScope*scope, const pform_name_t&name) { assert(scope); std::list eval_path = eval_scope_path(this, scope, name); NetScope*func = find_scope(scope, eval_path, NetScope::FUNC); if (func && (func->type() == NetScope::FUNC)) return func->func_def(); return 0; } NetScope* Design::find_task(NetScope*scope, const pform_name_t&name) { std::list eval_path = eval_scope_path(this, scope, name); NetScope*task = find_scope(scope, eval_path, NetScope::TASK); if (task && (task->type() == NetScope::TASK)) return task; return 0; } void Design::add_node(NetNode*net) { assert(net->design_ == 0); if (nodes_ == 0) { net->node_next_ = net; net->node_prev_ = net; } else { net->node_next_ = nodes_->node_next_; net->node_prev_ = nodes_; net->node_next_->node_prev_ = net; net->node_prev_->node_next_ = net; } nodes_ = net; net->design_ = this; } void Design::del_node(NetNode*net) { assert(net->design_ == this); assert(net != 0); /* Interact with the Design::functor method by manipulating the cur and nxt pointers that it is using. */ if (net == nodes_functor_nxt_) nodes_functor_nxt_ = nodes_functor_nxt_->node_next_; if (net == nodes_functor_nxt_) nodes_functor_nxt_ = 0; if (net == nodes_functor_cur_) nodes_functor_cur_ = 0; /* Now perform the actual delete. */ if (nodes_ == net) nodes_ = net->node_prev_; if (nodes_ == net) { nodes_ = 0; } else { net->node_next_->node_prev_ = net->node_prev_; net->node_prev_->node_next_ = net->node_next_; } net->design_ = 0; } void Design::add_process(NetProcTop*pro) { pro->next_ = procs_; procs_ = pro; } void Design::delete_process(NetProcTop*top) { assert(top); if (procs_ == top) { procs_ = top->next_; } else { NetProcTop*cur = procs_; while (cur->next_ != top) { assert(cur->next_); cur = cur->next_; } cur->next_ = top->next_; } if (procs_idx_ == top) procs_idx_ = top->next_; delete top; }