/* * Copyright (c) 2001 Stephen Williams (steve@icarus.com) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ #if !defined(WINNT) #ident "$Id: eval_expr.c,v 1.36 2001/07/09 15:38:35 steve Exp $" #endif # include "vvp_priv.h" # include # include # include struct vector_info draw_eval_expr_wid(ivl_expr_t exp, unsigned wid); static unsigned char allocation_map[0x10000/8]; static inline int peek_bit(unsigned addr) { unsigned bit = addr % 8; addr /= 8; return 1 & (allocation_map[addr] >> bit); } static inline void set_bit(unsigned addr) { unsigned bit = addr % 8; addr /= 8; allocation_map[addr] |= (1 << bit); } static inline void clr_bit(unsigned addr) { unsigned bit = addr % 8; addr /= 8; allocation_map[addr] &= ~(1 << bit); } /* * This clears a vector that was previously allocated by * allocate_vector. That is, it unmarks all the bits of the map that * represent this vector. * * If the vector is based in one of 4 constant bit values, then there * are no bits to clear. If the vector is based in the 4-8 result * area, then someone is broken. */ void clr_vector(struct vector_info vec) { unsigned idx; if (vec.base < 4) return; assert(vec.base >= 8); for (idx = 0 ; idx < vec.wid ; idx += 1) clr_bit(vec.base + idx); } static unsigned short allocate_vector(unsigned short wid) { unsigned short base = 8; unsigned short idx = 0; while (idx < wid) { assert((base + idx) < 0x10000); if (peek_bit(base+idx)) { base = base + idx + 1; idx = 0; } else { idx += 1; } } for (idx = 0 ; idx < wid ; idx += 1) set_bit(base+idx); return base; } static struct vector_info draw_binary_expr_eq(ivl_expr_t exp) { ivl_expr_t le = ivl_expr_oper1(exp); ivl_expr_t re = ivl_expr_oper2(exp); struct vector_info lv; struct vector_info rv; unsigned wid = ivl_expr_width(le); if (ivl_expr_width(re) > wid) wid = ivl_expr_width(re); lv = draw_eval_expr_wid(le, wid); rv = draw_eval_expr_wid(re, wid); switch (ivl_expr_opcode(exp)) { case 'E': /* === */ assert(lv.wid == rv.wid); fprintf(vvp_out, " %%cmp/u %u, %u, %u;\n", lv.base, rv.base, lv.wid); clr_vector(lv); clr_vector(rv); lv.base = 6; lv.wid = 1; break; case 'e': /* == */ assert(lv.wid == rv.wid); fprintf(vvp_out, " %%cmp/u %u, %u, %u;\n", lv.base, rv.base, lv.wid); clr_vector(lv); clr_vector(rv); lv.base = 4; lv.wid = 1; break; case 'N': /* !== */ assert(lv.wid == rv.wid); fprintf(vvp_out, " %%cmp/u %u, %u, %u;\n", lv.base, rv.base, lv.wid); fprintf(vvp_out, " %%inv 6, 1;\n"); clr_vector(lv); clr_vector(rv); lv.base = 6; lv.wid = 1; break; case 'n': /* != */ assert(lv.wid == rv.wid); fprintf(vvp_out, " %%cmp/u %u, %u, %u;\n", lv.base, rv.base, lv.wid); fprintf(vvp_out, " %%inv 4, 1;\n"); clr_vector(lv); clr_vector(rv); lv.base = 4; lv.wid = 1; break; default: assert(0); } /* Move the result out out the 4-7 bit that the compare uses. This is because that bit may be clobbered by other expressions. */ { unsigned short base = allocate_vector(1); fprintf(vvp_out, " %%mov %u, %u, 1;\n", base, lv.base); lv.base = base; lv.wid = 1; } return lv; } static struct vector_info draw_binary_expr_land(ivl_expr_t exp, unsigned wid) { ivl_expr_t le = ivl_expr_oper1(exp); ivl_expr_t re = ivl_expr_oper2(exp); struct vector_info lv; struct vector_info rv; /* XXXX For now, assume the operands are a single bit. */ assert(ivl_expr_width(le) == 1); assert(ivl_expr_width(re) == 1); lv = draw_eval_expr_wid(le, wid); rv = draw_eval_expr_wid(re, wid); if (lv.base < 4) { if (rv.base < 4) { unsigned lb = lv.base; unsigned rb = rv.base; if ((lb == 0) || (rb == 0)) { lv.base = 0; } else if ((lb == 1) && (rb == 1)) { lv.base = 1; } else { lv.base = 2; } } else { fprintf(vvp_out, " %%and %u, %u, 1;\n", rv.base, lv.base); lv = rv; } } else { fprintf(vvp_out, " %%and %u, %u, 1;\n", lv.base, rv.base); clr_vector(rv); } assert(wid == 1); return lv; } static struct vector_info draw_binary_expr_lor(ivl_expr_t exp, unsigned wid) { ivl_expr_t le = ivl_expr_oper1(exp); ivl_expr_t re = ivl_expr_oper2(exp); struct vector_info lv; struct vector_info rv; /* XXXX For now, assume the operands are a single bit. */ assert(ivl_expr_width(le) == 1); assert(ivl_expr_width(re) == 1); lv = draw_eval_expr_wid(le, wid); rv = draw_eval_expr_wid(re, wid); if (lv.base < 4) { if (rv.base < 4) { unsigned lb = lv.base; unsigned rb = rv.base; if ((lb == 0) && (rb == 0)) { lv.base = 0; } else if ((lb == 1) || (rb == 1)) { lv.base = 1; } else { lv.base = 2; } } else { fprintf(vvp_out, " %%or %u, %u, 1;\n", rv.base, lv.base); lv = rv; } } else { fprintf(vvp_out, " %%or %u, %u, 1;\n", lv.base, rv.base); clr_vector(rv); } assert(wid == 1); return lv; } static struct vector_info draw_binary_expr_le(ivl_expr_t exp, unsigned wid) { ivl_expr_t le = ivl_expr_oper1(exp); ivl_expr_t re = ivl_expr_oper2(exp); struct vector_info lv; struct vector_info rv; char s_flag = (ivl_expr_signed(le) && ivl_expr_signed(re)) ? 's' : 'u'; unsigned owid = ivl_expr_width(le); if (ivl_expr_width(re) > owid) owid = ivl_expr_width(re); lv = draw_eval_expr_wid(le, owid); rv = draw_eval_expr_wid(re, owid); switch (ivl_expr_opcode(exp)) { case 'G': assert(lv.wid == rv.wid); fprintf(vvp_out, " %%cmp/%c %u, %u, %u;\n", s_flag, rv.base, lv.base, lv.wid); fprintf(vvp_out, " %%or 5, 4, 1;\n"); break; case 'L': assert(lv.wid == rv.wid); fprintf(vvp_out, " %%cmp/%c %u, %u, %u;\n", s_flag, lv.base, rv.base, lv.wid); fprintf(vvp_out, " %%or 5, 4, 1;\n"); break; case '<': assert(lv.wid == rv.wid); fprintf(vvp_out, " %%cmp/%c %u, %u, %u;\n", s_flag, lv.base, rv.base, lv.wid); break; case '>': assert(lv.wid == rv.wid); fprintf(vvp_out, " %%cmp/%c %u, %u, %u;\n", s_flag, rv.base, lv.base, lv.wid); break; default: assert(0); } clr_vector(lv); clr_vector(rv); /* Move the result out out the 4-7 bit that the compare uses. This is because that bit may be clobbered by other expressions. */ { unsigned short base = allocate_vector(1); fprintf(vvp_out, " %%mov %u, 5, 1;\n", base); lv.base = base; lv.wid = 1; } assert(wid == 1); return lv; } static struct vector_info draw_binary_expr_logic(ivl_expr_t exp, unsigned wid) { ivl_expr_t le = ivl_expr_oper1(exp); ivl_expr_t re = ivl_expr_oper2(exp); struct vector_info lv; struct vector_info rv; lv = draw_eval_expr_wid(le, wid); rv = draw_eval_expr_wid(re, wid); /* The result goes into the left operand, and that is returned as the result. The instructions do not allow the lv value to be a constant bit, so we either switch the operands, or copy the vector into a new area. */ if (lv.base < 4) { if (rv.base > 4) { struct vector_info tmp = lv; lv = rv; rv = tmp; } else { struct vector_info tmp; tmp.base = allocate_vector(lv.wid); tmp.wid = lv.wid; fprintf(vvp_out, " %%mov %u, %u, %u;\n", tmp.base, lv.base, tmp.wid); lv = tmp; } } switch (ivl_expr_opcode(exp)) { case '&': fprintf(vvp_out, " %%and %u, %u, %u;\n", lv.base, rv.base, wid); break; case '|': fprintf(vvp_out, " %%or %u, %u, %u;\n", lv.base, rv.base, wid); break; case '^': fprintf(vvp_out, " %%xor %u, %u, %u;\n", lv.base, rv.base, wid); break; case 'X': /* exclusive nor (~^) */ fprintf(vvp_out, " %%xnor %u, %u, %u;\n", lv.base, rv.base, wid); break; default: assert(0); } clr_vector(rv); return lv; } /* * Draw code to evaluate the << expression. Use the %shiftl/i0 * or %shiftr/i0 instruction to do the real work of shifting. This * means that I can handle both left and right shifts in this * function, with the only difference the opcode I generate at the * end. */ static struct vector_info draw_binary_expr_lrs(ivl_expr_t exp, unsigned wid) { ivl_expr_t le = ivl_expr_oper1(exp); ivl_expr_t re = ivl_expr_oper2(exp); struct vector_info lv; /* Figure out the shift amount and load that into the index register. The value may be a constant, or may need to be evaluated at run time. */ switch (ivl_expr_type(re)) { case IVL_EX_NUMBER: { unsigned shift = 0; unsigned idx, nbits = ivl_expr_width(re); const char*bits = ivl_expr_bits(re); for (idx = 0 ; idx < nbits ; idx += 1) switch (bits[idx]) { case '0': break; case '1': assert(idx < (8*sizeof shift)); shift |= 1 << idx; break; default: assert(0); } fprintf(vvp_out, " %%ix/load 0, %u;\n", shift); break; } case IVL_EX_ULONG: fprintf(vvp_out, " %%ix/load 0, %lu;\n", ivl_expr_uvalue(re)); break; default: { struct vector_info rv; rv = draw_eval_expr(re); fprintf(vvp_out, " %%ix/get 0, %u, %u;\n", rv.base, rv.wid); clr_vector(rv); break; } } lv = draw_eval_expr_wid(le, wid); switch (ivl_expr_opcode(exp)) { case 'l': /* << (left shift) */ fprintf(vvp_out, " %%shiftl/i0 %u, %u;\n", lv.base, lv.wid); break; case 'r': /* >> (unsigned right shift) */ fprintf(vvp_out, " %%shiftr/i0 %u, %u;\n", lv.base, lv.wid); break; default: assert(0); } return lv; } static struct vector_info draw_binary_expr_arith(ivl_expr_t exp, unsigned wid) { ivl_expr_t le = ivl_expr_oper1(exp); ivl_expr_t re = ivl_expr_oper2(exp); struct vector_info lv; struct vector_info rv; lv = draw_eval_expr_wid(le, wid); rv = draw_eval_expr_wid(re, wid); assert(lv.wid == wid); assert(rv.wid == wid); switch (ivl_expr_opcode(exp)) { case '+': fprintf(vvp_out, " %%add %u, %u, %u;\n", lv.base, rv.base, wid); break; case '-': fprintf(vvp_out, " %%sub %u, %u, %u;\n", lv.base, rv.base, wid); break; case '*': fprintf(vvp_out, " %%mul %u, %u, %u;\n", lv.base, rv.base, wid); break; case '%': fprintf(vvp_out, " %%mod %u, %u, %u;\n", lv.base, rv.base, wid); break; default: assert(0); } clr_vector(rv); return lv; } static struct vector_info draw_binary_expr(ivl_expr_t exp, unsigned wid) { struct vector_info rv; switch (ivl_expr_opcode(exp)) { case 'a': /* && (logical and) */ rv = draw_binary_expr_land(exp, wid); break; case 'E': /* === */ case 'e': /* == */ case 'N': /* !== */ case 'n': /* != */ assert(wid == 1); rv = draw_binary_expr_eq(exp); break; case '<': case '>': case 'L': /* <= */ case 'G': /* >= */ rv = draw_binary_expr_le(exp, wid); break; case '+': case '-': case '*': case '%': rv = draw_binary_expr_arith(exp, wid); break; case 'l': /* << */ case 'r': /* >> */ rv = draw_binary_expr_lrs(exp, wid); break; case 'o': /* || (logical or) */ rv = draw_binary_expr_lor(exp, wid); break; case '&': case '|': case '^': case 'X': rv = draw_binary_expr_logic(exp, wid); break; default: fprintf(stderr, "vvp.tgt error: unsupported binary (%c)\n", ivl_expr_opcode(exp)); assert(0); } return rv; } static struct vector_info draw_concat_expr(ivl_expr_t exp, unsigned wid) { unsigned idx, off; struct vector_info res; assert(wid >= ivl_expr_width(exp)); res.base = allocate_vector(wid); res.wid = wid; idx = ivl_expr_parms(exp); off = 0; while (idx > 0) { ivl_expr_t arg = ivl_expr_parm(exp, idx-1); unsigned awid = ivl_expr_width(arg); struct vector_info avec = draw_eval_expr_wid(arg, awid); fprintf(vvp_out, " %%mov %u, %u, %u;\n", res.base+off, avec.base, avec.wid); clr_vector(avec); idx -= 1; off += awid; } if (off < wid) { fprintf(vvp_out, " %%mov %u, 0, %u;\n", res.base+off, wid-off); } return res; } /* * A number in an expression is made up by copying constant bits into * the allocated vector. */ static struct vector_info draw_number_expr(ivl_expr_t exp, unsigned wid) { unsigned idx; unsigned nwid; struct vector_info res; const char*bits = ivl_expr_bits(exp); res.wid = wid; nwid = wid; if (ivl_expr_width(exp) < nwid) nwid = ivl_expr_width(exp); /* If all the bits of the number have the same value, then we can use a constant bit. There is no need to allocate wr bits, and there is no need to generate any code. */ for (idx = 1 ; idx < nwid ; idx += 1) { if (bits[idx] != bits[0]) break; } if (idx >= res.wid) { switch (bits[0]) { case '0': res.base = 0; break; case '1': res.base = 1; break; case 'x': res.base = 2; break; case 'z': res.base = 3; break; } return res; } /* The number value needs to be represented as an allocated vector. Allocate the vector and use %mov instructions to load the constant bit values. */ res.base = allocate_vector(wid); idx = 0; while (idx < nwid) { unsigned cnt; char src = '?'; switch (bits[idx]) { case '0': src = '0'; break; case '1': src = '1'; break; case 'x': src = '2'; break; case 'z': src = '3'; break; } for (cnt = 1 ; idx+cnt < wid ; cnt += 1) if (bits[idx+cnt] != bits[idx]) break; fprintf(vvp_out, " %%mov %u, %c, %u;\n", res.base+idx, src, cnt); idx += cnt; } /* Pad the number up to the expression width. */ if (idx < wid) fprintf(vvp_out, " %%mov %u, 0, %u;\n", res.base+idx, wid-idx); return res; } static struct vector_info draw_signal_expr(ivl_expr_t exp, unsigned wid) { unsigned idx; unsigned swid = ivl_expr_width(exp); const char*name = ivl_expr_name(exp); struct vector_info res; if (swid > wid) swid = wid; res.base = allocate_vector(wid); res.wid = wid; for (idx = 0 ; idx < swid ; idx += 1) fprintf(vvp_out, " %%load %u, V_%s[%u];\n", res.base+idx, vvp_mangle_id(name), idx); /* Pad the signal value with zeros. */ if (swid < wid) fprintf(vvp_out, " %%mov %u, 0, %u;\n", res.base+swid, wid-swid); return res; } void draw_memory_index_expr(ivl_memory_t mem, ivl_expr_t ae) { int root = ivl_memory_root(mem); unsigned width = ivl_memory_width(mem); width = (width+3) & ~3; switch (ivl_expr_type(ae)) { case IVL_EX_NUMBER: { unsigned nbits = ivl_expr_width(ae); const char*bits = ivl_expr_bits(ae); unsigned long v = 0; unsigned idx; for (idx = 0 ; idx < nbits ; idx += 1) switch (bits[idx]) { case '0': break; case '1': assert(idx < (8*sizeof v)); v |= 1 << idx; break; default: v = ~0UL; break; } fprintf(vvp_out, " %%ix/load 3, %lu;\n", (v-root)*width); break; } case IVL_EX_ULONG: { unsigned v = ivl_expr_uvalue(ae); fprintf(vvp_out, " %%ix/load 3, %u;\n", (v-root)*width); break; } default: { struct vector_info addr = draw_eval_expr(ae); fprintf(vvp_out, " %%ix/get 3, %u, %u;\n", addr.base, addr.wid); clr_vector(addr); if (root>0) fprintf(vvp_out, " %%ix/sub 3, %u;\n", root); if (width>1) fprintf(vvp_out, " %%ix/mul 3, %u;\n", width); break; } } } static struct vector_info draw_memory_expr(ivl_expr_t exp, unsigned wid) { unsigned swid = ivl_expr_width(exp); const char*name = ivl_expr_name(exp); struct vector_info res; unsigned idx; draw_memory_index_expr(ivl_expr_memory(exp), ivl_expr_oper1(exp)); if (swid > wid) swid = wid; res.base = allocate_vector(wid); res.wid = wid; for (idx = 0 ; idx < swid ; idx += 1) { if (idx) fprintf(vvp_out, " %%ix/add 3, 1;\n"); fprintf(vvp_out, " %%load/m %u, M_%s;\n", res.base+idx, vvp_mangle_id(name)); } /* Pad the signal value with zeros. */ if (swid < wid) fprintf(vvp_out, " %%mov %u, 0, %u;\n", res.base+swid, wid-swid); return res; } static struct vector_info draw_ternary_expr(ivl_expr_t exp, unsigned wid) { struct vector_info res, tmp; unsigned lab_false, lab_out; ivl_expr_t cond = ivl_expr_oper1(exp); ivl_expr_t true_ex = ivl_expr_oper2(exp); ivl_expr_t false_ex = ivl_expr_oper3(exp); lab_false = local_count++; lab_out = local_count++; tmp = draw_eval_expr(cond); clr_vector(tmp); res.base = allocate_vector(wid); res.wid = wid; fprintf(vvp_out, " %%jmp/0xz T_%d.%d, %u;\n", thread_count, lab_false, tmp.base); tmp = draw_eval_expr_wid(true_ex, wid); fprintf(vvp_out, " %%mov %u, %u, %u;\n", res.base, tmp.base, wid); fprintf(vvp_out, " %%jmp T_%d.%d;\n", thread_count, lab_out); clr_vector(tmp); fprintf(vvp_out, "T_%d.%d ;\n", thread_count, lab_false); tmp = draw_eval_expr_wid(false_ex, wid); fprintf(vvp_out, " %%mov %u, %u, %u;\n", res.base, tmp.base, wid); clr_vector(tmp); fprintf(vvp_out, "T_%d.%d ;\n", thread_count, lab_out); return res; } static struct vector_info draw_sfunc_expr(ivl_expr_t exp, unsigned wid) { unsigned idx; struct vector_info *vec = 0x0; unsigned int vecs= 0; unsigned int veci= 0; unsigned parm_count = ivl_expr_parms(exp); struct vector_info res; /* If the function has no parameters, then use this short-form to draw the statement. */ if (parm_count == 0) { res.base = allocate_vector(wid); res.wid = wid; fprintf(vvp_out, " %%vpi_func \"%s\", %u, %u;\n", ivl_expr_name(exp), res.base, res.wid); return res; } /* Evaluate any expressions that need to be evaluated by the run-time before passed to the system task. The results are stored in the vec array. */ for (idx = 0 ; idx < parm_count ; idx += 1) { ivl_expr_t expr = ivl_expr_parm(exp, idx); switch (ivl_expr_type(expr)) { case IVL_EX_NONE: case IVL_EX_NUMBER: case IVL_EX_SIGNAL: case IVL_EX_STRING: case IVL_EX_SCOPE: case IVL_EX_SFUNC: continue; case IVL_EX_MEMORY: if (!ivl_expr_oper1(expr)) { continue; } default: break; } vec = (struct vector_info *) realloc(vec, (vecs+1)*sizeof(struct vector_info)); vec[vecs] = draw_eval_expr(expr); vecs++; } /* Start the complicated expression. */ res.base = allocate_vector(wid); res.wid = wid; fprintf(vvp_out, " %%vpi_func \"%s\", %u, %u", ivl_expr_name(exp), res.base, res.wid); /* Now draw all the parameters to the function. */ for (idx = 0 ; idx < parm_count ; idx += 1) { ivl_expr_t expr = ivl_expr_parm(exp, idx); switch (ivl_expr_type(expr)) { case IVL_EX_NONE: fprintf(vvp_out, ", \" \""); continue; case IVL_EX_NUMBER: { unsigned bit, wid = ivl_expr_width(expr); const char*bits = ivl_expr_bits(expr); fprintf(vvp_out, ", %u'b", wid); for (bit = wid ; bit > 0 ; bit -= 1) fputc(bits[bit-1], vvp_out); continue; } case IVL_EX_SIGNAL: fprintf(vvp_out, ", V_%s", vvp_mangle_id(ivl_expr_name(expr))); continue; case IVL_EX_STRING: fprintf(vvp_out, ", \"%s\"", ivl_expr_string(expr)); continue; case IVL_EX_SCOPE: fprintf(vvp_out, ", S_%s", vvp_mangle_id(ivl_scope_name(ivl_expr_scope(expr)))); continue; case IVL_EX_SFUNC: if (strcmp("$time", ivl_expr_name(expr)) == 0) fprintf(vvp_out, ", $time"); else fprintf(vvp_out, ", ?"); continue; case IVL_EX_MEMORY: if (!ivl_expr_oper1(expr)) { fprintf(vvp_out, ", M_%s", vvp_mangle_id(ivl_expr_name(expr))); continue; } break; default: break; } fprintf(vvp_out, ", T<%u,%u>", vec[veci].base, vec[veci].wid); veci++; } assert(veci == vecs); if (vecs) { for (idx = 0; idx < vecs; idx++) clr_vector(vec[idx]); free(vec); } fprintf(vvp_out, ";\n"); return res; } /* * A call to a user defined function generates a result that is the * result of this expression. * * The result of the function is placed by the function execution into * a signal within the scope of the function that also has a basename * the same as the function. The ivl_target API handled the result * mapping already, and we get the name of the result signal as * parameter 0 of the function definition. */ static struct vector_info draw_ufunc_expr(ivl_expr_t exp, unsigned wid) { unsigned idx; unsigned swid = ivl_expr_width(exp); ivl_scope_t def = ivl_expr_def(exp); const char*name = ivl_scope_port(def, 0); struct vector_info res; /* evaluate the expressions and send the results to the function ports. */ assert(ivl_expr_parms(exp) == (ivl_scope_ports(def)-1)); for (idx = 0 ; idx < ivl_expr_parms(exp) ; idx += 1) { const char*port = ivl_scope_port(def, idx+1); unsigned pin, bit; res = draw_eval_expr(ivl_expr_parm(exp, idx)); bit = res.base; for (pin = 0 ; pin < res.wid ; pin += 1) { fprintf(vvp_out, " %%set V_%s[%u], %u;\n", vvp_mangle_id(port), pin, bit); if (bit >= 4) bit += 1; } clr_vector(res); } /* Call the function */ fprintf(vvp_out, " %%fork TD_%s", vvp_mangle_id(ivl_scope_name(def))); fprintf(vvp_out, ", S_%s;\n", vvp_mangle_id(ivl_scope_name(def))); fprintf(vvp_out, " %%join;\n"); /* The return value is in a signal that has the name of the expression. Load that into the thread and return the vector result. */ res.base = allocate_vector(wid); res.wid = wid; for (idx = 0 ; idx < swid ; idx += 1) fprintf(vvp_out, " %%load %u, V_%s[%u];\n", res.base+idx, vvp_mangle_id(name), idx); /* Pad the signal value with zeros. */ if (swid < wid) fprintf(vvp_out, " %%mov %u, 0, %u;\n", res.base+swid, wid-swid); return res; } static struct vector_info draw_unary_expr(ivl_expr_t exp, unsigned wid) { struct vector_info res; ivl_expr_t sub = ivl_expr_oper1(exp); const char *rop; int inv = 0; switch (ivl_expr_opcode(exp)) { case '!': rop = "nor"; break; case '&': rop = "and"; break; case '|': rop = "or"; break; case '^': rop = "xor"; break; case 'A': rop = "nand"; break; case 'N': rop = "nor"; break; case 'X': rop = "xnor"; break; } switch (ivl_expr_opcode(exp)) { case '~': res = draw_eval_expr_wid(sub, wid); fprintf(vvp_out, " %%inv %u, %u;\n", res.base, res.wid); break; case '!': case 'N': case 'A': case 'X': inv = 1; case '&': case '|': case '^': res = draw_eval_expr(sub); if (res.wid > 1) { /* a ! on a vector is implemented with a reduction nor. Generate the result into the first bit of the input vector and free the rest of the vector. */ struct vector_info tmp; assert(res.base >= 4); tmp.base = res.base+1; tmp.wid = res.wid - 1; fprintf(vvp_out, " %%%s/r %u, %u, %u;\n", rop, res.base, res.base, res.wid); clr_vector(tmp); res.wid = 1; } else if (inv) { fprintf(vvp_out, " %%inv %u, 1;\n", res.base); } break; default: fprintf(stderr, "vvp error: unhandled unary: %c\n", ivl_expr_opcode(exp)); assert(0); } return res; } struct vector_info draw_eval_expr_wid(ivl_expr_t exp, unsigned wid) { struct vector_info res; switch (ivl_expr_type(exp)) { default: fprintf(stderr, "vvp error: unhandled expr type: %u\n", ivl_expr_type(exp)); case IVL_EX_NONE: assert(0); res.base = 0; res.wid = 0; break; case IVL_EX_BINARY: res = draw_binary_expr(exp, wid); break; case IVL_EX_CONCAT: res = draw_concat_expr(exp, wid); break; case IVL_EX_NUMBER: res = draw_number_expr(exp, wid); break; case IVL_EX_SIGNAL: res = draw_signal_expr(exp, wid); break; case IVL_EX_TERNARY: res = draw_ternary_expr(exp, wid); break; case IVL_EX_MEMORY: res = draw_memory_expr(exp, wid); break; case IVL_EX_SFUNC: res = draw_sfunc_expr(exp, wid); break; case IVL_EX_UFUNC: res = draw_ufunc_expr(exp, wid); break; case IVL_EX_UNARY: res = draw_unary_expr(exp, wid); break; } return res; } struct vector_info draw_eval_expr(ivl_expr_t exp) { return draw_eval_expr_wid(exp, ivl_expr_width(exp)); } /* * $Log: eval_expr.c,v $ * Revision 1.36 2001/07/09 15:38:35 steve * Properly step through wide inputs. (Stephan Boettcher) * * Revision 1.35 2001/07/07 20:20:10 steve * Pass parameters to system functions. * * Revision 1.34 2001/06/30 21:07:26 steve * Support non-const right shift (unsigned). * * Revision 1.33 2001/06/23 18:40:34 steve * Generate %shiftl instructions for shift. * * Revision 1.32 2001/06/21 04:53:59 steve * Escaped identifiers in behavioral expressions. (Stephan Boettcher) * * Revision 1.31 2001/06/18 01:09:32 steve * More behavioral unary reduction operators. * (Stephan Boettcher) * * Revision 1.30 2001/06/16 23:45:05 steve * Add support for structural multiply in t-dll. * Add code generators and vvp support for both * structural and behavioral multiply. * * Revision 1.29 2001/05/24 04:20:10 steve * Add behavioral modulus. * * Revision 1.28 2001/05/20 01:18:38 steve * Implement reduction nor. * * Revision 1.27 2001/05/20 01:02:55 steve * Initial support for system functions. * * Revision 1.26 2001/05/17 04:37:02 steve * Behavioral ternary operators for vvp. * * Revision 1.25 2001/05/10 00:26:53 steve * VVP support for memories in expressions, * including general support for thread bit * vectors as system task parameters. * (Stephan Boettcher) * * Revision 1.24 2001/05/06 17:54:33 steve * Behavioral code to read memories. (Stephan Boettcher) * * Revision 1.23 2001/05/02 01:57:25 steve * Support behavioral subtraction. * * Revision 1.22 2001/05/01 02:07:34 steve * Comparisons cant leave their results in the opcode * result area or their values will be clobbered by other * parts of a complex expression. * * Revision 1.21 2001/04/30 05:11:18 steve * OR is %or. Get this right. * * Revision 1.20 2001/04/29 20:47:39 steve * Evalulate logical or (||) */