/* * Copyright (c) 2004-2005 Stephen Williams (steve@icarus.com) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ #ident "$Id: vvp_net.cc,v 1.26 2005/04/28 04:59:53 steve Exp $" # include "config.h" # include "vvp_net.h" # include "schedule.h" # include # include # include # include /* *** BIT operations *** */ vvp_bit4_t add_with_carry(vvp_bit4_t a, vvp_bit4_t b, vvp_bit4_t&c) { if (bit4_is_xz(a) || bit4_is_xz(b) || bit4_is_xz(c)) { c = BIT4_X; return BIT4_X; } // NOTE: This relies on the facts that XZ values have been // weeded out, and that BIT4_1 is 1 and BIT4_0 is 0. int sum = (int)a + (int)b + (int)c; switch (sum) { case 0: return BIT4_0; case 1: c = BIT4_0; return BIT4_1; case 2: c = BIT4_1; return BIT4_0; case 3: c = BIT4_1; return BIT4_1; default: assert(0); } } bool bit4_is_xz(vvp_bit4_t a) { if (a == BIT4_X) return true; if (a == BIT4_Z) return true; return false; } vvp_bit4_t operator & (vvp_bit4_t a, vvp_bit4_t b) { if (a == BIT4_0) return BIT4_0; if (b == BIT4_0) return BIT4_0; if (bit4_is_xz(a)) return BIT4_X; if (bit4_is_xz(b)) return BIT4_X; return BIT4_1; } vvp_bit4_t operator | (vvp_bit4_t a, vvp_bit4_t b) { if (a == BIT4_1) return BIT4_1; if (b == BIT4_1) return BIT4_1; if (bit4_is_xz(a)) return BIT4_X; if (bit4_is_xz(b)) return BIT4_X; return BIT4_0; } vvp_bit4_t operator ^ (vvp_bit4_t a, vvp_bit4_t b) { if (bit4_is_xz(a)) return BIT4_X; if (bit4_is_xz(b)) return BIT4_X; if (a == BIT4_0) return b; if (b == BIT4_0) return a; return BIT4_0; } vvp_bit4_t operator ~ (vvp_bit4_t a) { switch (a) { case BIT4_0: return BIT4_1; case BIT4_1: return BIT4_0; default: return BIT4_X; } } ostream& operator<<(ostream&out, vvp_bit4_t bit) { switch (bit) { case BIT4_0: out << "0"; break; case BIT4_1: out << "1"; break; case BIT4_X: out << "X"; break; case BIT4_Z: out << "Z"; break; default: out << "?"; break; } return out; } void vvp_send_vec4(vvp_net_ptr_t ptr, vvp_vector4_t val) { while (struct vvp_net_t*cur = ptr.ptr()) { vvp_net_ptr_t next = cur->port[ptr.port()]; if (cur->fun) cur->fun->recv_vec4(ptr, val); ptr = next; } } void vvp_send_vec4_pv(vvp_net_ptr_t ptr, vvp_vector4_t val, unsigned base, unsigned wid, unsigned vwid) { while (struct vvp_net_t*cur = ptr.ptr()) { vvp_net_ptr_t next = cur->port[ptr.port()]; if (cur->fun) cur->fun->recv_vec4_pv(ptr, val, base, wid, vwid); ptr = next; } } void vvp_send_vec8(vvp_net_ptr_t ptr, vvp_vector8_t val) { while (struct vvp_net_t*cur = ptr.ptr()) { vvp_net_ptr_t next = cur->port[ptr.port()]; if (cur->fun) cur->fun->recv_vec8(ptr, val); ptr = next; } } void vvp_send_real(vvp_net_ptr_t ptr, double val) { while (struct vvp_net_t*cur = ptr.ptr()) { vvp_net_ptr_t next = cur->port[ptr.port()]; if (cur->fun) cur->fun->recv_real(ptr, val); ptr = next; } } void vvp_send_long(vvp_net_ptr_t ptr, long val) { while (struct vvp_net_t*cur = ptr.ptr()) { vvp_net_ptr_t next = cur->port[ptr.port()]; if (cur->fun) cur->fun->recv_long(ptr, val); ptr = next; } } const unsigned bits_per_word = sizeof (unsigned long) / 2; vvp_vector4_t::vvp_vector4_t(const vvp_vector4_t&that) { size_ = that.size_; if (size_ > bits_per_word) { unsigned words = (size_+bits_per_word-1) / bits_per_word; bits_ptr_ = new unsigned long[words]; for (unsigned idx = 0 ; idx < words ; idx += 1) bits_ptr_[idx] = that.bits_ptr_[idx]; } else { bits_val_ = that.bits_val_; } } vvp_vector4_t::vvp_vector4_t(unsigned size) : size_(size) { /* Make a work full of initialized bits. */ unsigned long initial_value_bits = 0xaa; for (unsigned idx = 0 ; idx < sizeof (unsigned long) ; idx += 1) initial_value_bits = (initial_value_bits << 8) | 0xaa; if (size_ > bits_per_word) { unsigned cnt = (size_ + bits_per_word - 1) / bits_per_word; bits_ptr_ = new unsigned long[cnt]; for (unsigned idx = 0 ; idx < cnt ; idx += 1) bits_ptr_[idx] = initial_value_bits; } else { bits_val_ = initial_value_bits; } } vvp_vector4_t::~vvp_vector4_t() { if (size_ > bits_per_word) { delete[] bits_ptr_; } } vvp_vector4_t& vvp_vector4_t::operator= (const vvp_vector4_t&that) { if (size_ > bits_per_word) delete[] bits_ptr_; size_ = that.size_; if (size_ > bits_per_word) { unsigned cnt = (size_ + bits_per_word - 1) / bits_per_word; bits_ptr_ = new unsigned long[cnt]; for (unsigned idx = 0 ; idx < cnt ; idx += 1) bits_ptr_[idx] = that.bits_ptr_[idx]; } else { bits_val_ = that.bits_val_; } return *this; } vvp_bit4_t vvp_vector4_t::value(unsigned idx) const { if (idx >= size_) return BIT4_X; unsigned wdx = idx / bits_per_word; unsigned off = idx % bits_per_word; unsigned long bits; if (size_ > bits_per_word) { bits = bits_ptr_[wdx]; } else { bits = bits_val_; } bits >>= (off * 2); /* Casting is evil, but this cast matches the un-cast done when the vvp_bit4_t value is put into the vector. */ return (vvp_bit4_t) (bits & 3); } void vvp_vector4_t::set_bit(unsigned idx, vvp_bit4_t val) { assert(idx < size_); unsigned wdx = idx / bits_per_word; unsigned off = idx % bits_per_word; unsigned long mask = 3UL << (2*off); if (size_ > bits_per_word) { bits_ptr_[wdx] &= ~mask; bits_ptr_[wdx] |= val << (2*off); } else { bits_val_ &= ~mask; bits_val_ |= val << (2*off); } } bool vvp_vector4_t::eeq(const vvp_vector4_t&that) const { if (size_ != that.size_) return false; unsigned words = (size_+bits_per_word-1) / bits_per_word; if (words == 1) { if (bits_val_ == that.bits_val_) return true; else return false; } for (unsigned idx = 0 ; idx < words ; idx += 1) { if (bits_ptr_[idx] != that.bits_ptr_[idx]) return false; } return true; } char* vvp_vector4_t::as_string(char*buf, size_t buf_len) { char*res = buf; *buf++ = 'C'; *buf++ = '4'; *buf++ = '<'; buf_len -= 3; for (unsigned idx = 0 ; idx < size() && buf_len >= 2 ; idx += 1) { switch (value(size()-idx-1)) { case BIT4_0: *buf++ = '0'; break; case BIT4_1: *buf++ = '1'; break; case BIT4_X: *buf++ = 'x'; break; case BIT4_Z: *buf++ = 'z'; } buf_len -= 1; } *buf++ = '>'; *buf++ = 0; return res; } bool vector4_to_value(const vvp_vector4_t&vec, unsigned long&val) { unsigned long res = 0; unsigned long msk = 1; for (unsigned idx = 0 ; idx < vec.size() ; idx += 1) { switch (vec.value(idx)) { case BIT4_0: break; case BIT4_1: res |= msk; break; default: return false; } msk <<= 1UL; } val = res; return true; } vvp_vector2_t::vvp_vector2_t() { vec_ = 0; wid_ = 0; } vvp_vector2_t::vvp_vector2_t(unsigned long v, unsigned wid) { wid_ = wid; const unsigned bits_per_word = 8 * sizeof(vec_[0]); const unsigned words = (wid_ + bits_per_word-1) / bits_per_word; vec_ = new unsigned long[words]; for (unsigned idx = 0 ; idx < words ; idx += 1) vec_[idx] = 0; } vvp_vector2_t::vvp_vector2_t(const vvp_vector4_t&that) { wid_ = that.size(); const unsigned bits_per_word = 8 * sizeof(vec_[0]); const unsigned words = (that.size() + bits_per_word-1) / bits_per_word; if (words == 0) { vec_ = 0; wid_ = 0; return; } vec_ = new unsigned long[words]; for (unsigned idx = 0 ; idx < words ; idx += 1) vec_[idx] = 0; for (unsigned idx = 0 ; idx < that.size() ; idx += 1) { unsigned addr = idx / bits_per_word; unsigned shift = idx % bits_per_word; switch (that.value(idx)) { case BIT4_0: break; case BIT4_1: vec_[addr] |= 1 << shift; break; default: delete[]vec_; vec_ = 0; wid_ = 0; return; } } } vvp_vector2_t::~vvp_vector2_t() { if (vec_) delete[]vec_; } unsigned vvp_vector2_t::size() const { return wid_; } int vvp_vector2_t::value(unsigned idx) const { if (idx >= wid_) return 0; const unsigned bits_per_word = 8 * sizeof(vec_[0]); unsigned addr = idx/bits_per_word; unsigned mask = idx%bits_per_word; if (vec_[addr] & (1UL<= 2*sizeof(a.vec_[0])); unsigned long long word_mask = (1ULL << bits_per_word) - 1ULL; unsigned awords = (a.wid_ + bits_per_word - 1) / bits_per_word; unsigned bwords = (b.wid_ + bits_per_word - 1) / bits_per_word; unsigned rwords = (r.wid_ + bits_per_word - 1) / bits_per_word; for (unsigned bdx = 0 ; bdx < bwords ; bdx += 1) { unsigned long long tmpb = b.vec_[bdx]; if (tmpb == 0) continue; for (unsigned adx = 0 ; adx < awords ; adx += 1) { unsigned long long tmpa = a.vec_[adx]; unsigned long long tmpr = tmpb * tmpa; for (unsigned sdx = 0 ; (adx+bdx+sdx) < rwords && tmpr > 0 ; sdx += 1) { unsigned long long sum = r.vec_[adx+bdx+sdx]; sum += tmpr & word_mask; r.vec_[adx+bdx+sdx] = sum & word_mask; sum >>= bits_per_word; tmpr >>= bits_per_word; tmpr += sum; } } } return r; } vvp_vector4_t vector2_to_vector4(const vvp_vector2_t&that, unsigned wid) { vvp_vector4_t res (wid); for (unsigned idx = 0 ; idx < res.size() ; idx += 1) { vvp_bit4_t bit = BIT4_0; if (that.value(idx)) bit = BIT4_1; res.set_bit(idx, bit); } return res; } vvp_vector8_t::vvp_vector8_t(const vvp_vector8_t&that) { size_ = that.size_; bits_ = new vvp_scalar_t[size_]; for (unsigned idx = 0 ; idx < size_ ; idx += 1) bits_[idx] = that.bits_[idx]; } vvp_vector8_t::vvp_vector8_t(unsigned size) : size_(size) { if (size_ == 0) { bits_ = 0; return; } bits_ = new vvp_scalar_t[size_]; } vvp_vector8_t::vvp_vector8_t(const vvp_vector4_t&that, unsigned str) : size_(that.size()) { if (size_ == 0) { bits_ = 0; return; } bits_ = new vvp_scalar_t[size_]; for (unsigned idx = 0 ; idx < size_ ; idx += 1) bits_[idx] = vvp_scalar_t (that.value(idx), str); } vvp_vector8_t::vvp_vector8_t(const vvp_vector4_t&that, unsigned str0, unsigned str1) : size_(that.size()) { if (size_ == 0) { bits_ = 0; return; } bits_ = new vvp_scalar_t[size_]; for (unsigned idx = 0 ; idx < size_ ; idx += 1) bits_[idx] = vvp_scalar_t (that.value(idx), str0, str1); } vvp_vector8_t::~vvp_vector8_t() { if (size_ > 0) delete[]bits_; } vvp_vector8_t& vvp_vector8_t::operator= (const vvp_vector8_t&that) { if (size_ != that.size_) { if (size_ > 0) delete[]bits_; size_ = 0; } if (that.size_ == 0) { assert(size_ == 0); return *this; } if (size_ == 0) { size_ = that.size_; bits_ = new vvp_scalar_t[size_]; } for (unsigned idx = 0 ; idx < size_ ; idx += 1) bits_[idx] = that.bits_[idx]; return *this; } vvp_scalar_t vvp_vector8_t::value(unsigned idx) const { assert(idx < size_); return bits_[idx]; } void vvp_vector8_t::set_bit(unsigned idx, vvp_scalar_t val) { assert(idx < size_); bits_[idx] = val; } ostream& operator<<(ostream&out, const vvp_vector8_t&that) { out << "C8<"; for (unsigned idx = 0 ; idx < that.size() ; idx += 1) out << that.value(that.size()-idx-1); out << ">"; return out; } vvp_net_fun_t::vvp_net_fun_t() { } vvp_net_fun_t::~vvp_net_fun_t() { } void vvp_net_fun_t::recv_vec4(vvp_net_ptr_t, vvp_vector4_t) { fprintf(stderr, "internal error: %s: recv_vec4 not implemented\n", typeid(*this).name()); assert(0); } void vvp_net_fun_t::recv_vec4_pv(vvp_net_ptr_t, vvp_vector4_t, unsigned, unsigned, unsigned) { fprintf(stderr, "internal error: %s: recv_vec4_pv not implemented\n", typeid(*this).name()); assert(0); } void vvp_net_fun_t::recv_vec8(vvp_net_ptr_t port, vvp_vector8_t bit) { recv_vec4(port, reduce4(bit)); } void vvp_net_fun_t::recv_real(vvp_net_ptr_t, double) { fprintf(stderr, "internal error: %s: recv_real not implemented\n", typeid(*this).name()); assert(0); } void vvp_net_fun_t::recv_long(vvp_net_ptr_t, long) { fprintf(stderr, "internal error: %s: recv_long not implemented\n", typeid(*this).name()); assert(0); } /* **** vvp_fun_drive methods **** */ vvp_fun_drive::vvp_fun_drive(vvp_bit4_t init, unsigned str0, unsigned str1) { assert(str0 < 8); assert(str1 < 8); drive0_ = str0; drive1_ = str1; } vvp_fun_drive::~vvp_fun_drive() { } void vvp_fun_drive::recv_vec4(vvp_net_ptr_t port, vvp_vector4_t bit) { assert(port.port() == 0); vvp_send_vec8(port.ptr()->out, vvp_vector8_t(bit, drive0_, drive1_)); } /* **** vvp_fun_signal methods **** */ vvp_fun_signal::vvp_fun_signal(unsigned wid) : bits4_(wid), needs_init_(true) { vpi_callbacks = 0; continuous_assign_active_ = false; force_active_ = false; } bool vvp_fun_signal::type_is_vector8_() const { return bits8_.size() > 0; } /* * Nets simply reflect their input to their output. * * NOTE: It is a quirk of vvp_fun_signal that it has an initial value * that needs to be propagated, but after that it only needs to * propagate if the value changes. Elimitating duplicate propagations * should improve performance, but has the quirk that an input that * matches the initial value might not be propagated. The hack used * herein is to keep a "needs_init_" flag that is turned false after * the first propagation, and forces the first propagation to happen * even if it matches the initial value. */ void vvp_fun_signal::recv_vec4(vvp_net_ptr_t ptr, vvp_vector4_t bit) { switch (ptr.port()) { case 0: // Normal input (feed from net, or set from process) if (!continuous_assign_active_) { if (needs_init_ || !bits4_.eeq(bit)) { bits4_ = bit; needs_init_ = false; vvp_send_vec4(ptr.ptr()->out, bit); run_vpi_callbacks(); } } break; case 1: // Continuous assign value continuous_assign_active_ = true; if (type_is_vector8_()) { bits8_ = vvp_vector8_t(bit,6); vvp_send_vec8(ptr.ptr()->out, bits8_); } else { bits4_ = bit; vvp_send_vec4(ptr.ptr()->out, bits4_); } run_vpi_callbacks(); break; case 2: // Force value force_active_ = true; force_ = bit; vvp_send_vec4(ptr.ptr()->out, force_); run_vpi_callbacks(); break; default: assert(0); break; } } void vvp_fun_signal::recv_vec4_pv(vvp_net_ptr_t ptr, vvp_vector4_t bit, unsigned base, unsigned wid, unsigned vwid) { assert(bit.size() == wid); assert(bits4_.size() == vwid); switch (ptr.port()) { case 0: // Normal input if (! continuous_assign_active_) { for (unsigned idx = 0 ; idx < wid ; idx += 1) { if (base+idx >= bits4_.size()) break; bits4_.set_bit(base+idx, bit.value(idx)); } needs_init_ = false; vvp_send_vec4(ptr.ptr()->out, bits4_); run_vpi_callbacks(); } break; default: assert(0); break; } } void vvp_fun_signal::recv_vec8(vvp_net_ptr_t ptr, vvp_vector8_t bit) { // Only port-0 supports vector8_t inputs. assert(ptr.port() == 0); if (! continuous_assign_active_) { bits8_ = bit; needs_init_ = false; vvp_send_vec8(ptr.ptr()->out, bit); run_vpi_callbacks(); } } void vvp_fun_signal::deassign() { continuous_assign_active_ = false; } void vvp_fun_signal::release(vvp_net_ptr_t ptr, bool net) { force_active_ = false; if (net) { vvp_send_vec4(ptr.ptr()->out, bits4_); run_vpi_callbacks(); } else { bits4_ = force_; } } /* * The signal functor takes commands as long values to port-3. This * method interprets those commands. */ void vvp_fun_signal::recv_long(vvp_net_ptr_t ptr, long bit) { switch (ptr.port()) { case 3: // Command port switch (bit) { case 1: // deassign command deassign(); break; case 2: // release/net release(ptr, true); break; case 3: // release/reg release(ptr, false); break; default: assert(0); break; } break; default: // Other ports ar errors. assert(0); break; } } unsigned vvp_fun_signal::size() const { if (force_active_) return force_.size(); else if (type_is_vector8_()) return bits8_.size(); else return bits4_.size(); } vvp_bit4_t vvp_fun_signal::value(unsigned idx) const { if (force_active_) return force_.value(idx); else if (type_is_vector8_()) return bits8_.value(idx).value(); else return bits4_.value(idx); } vvp_scalar_t vvp_fun_signal::scalar_value(unsigned idx) const { if (force_active_) return vvp_scalar_t(force_.value(idx), 6, 6); else if (type_is_vector8_()) return bits8_.value(idx); else return vvp_scalar_t(bits4_.value(idx), 6, 6); } vvp_vector4_t vvp_fun_signal::vec4_value() const { if (force_active_) return force_; else if (type_is_vector8_()) return reduce4(bits8_); else return bits4_; } /* **** vvp_wide_fun_* methods **** */ vvp_wide_fun_core::vvp_wide_fun_core(vvp_net_t*net, unsigned nports) { ptr_ = net; nports_ = nports; port_values_ = new vvp_vector4_t [nports_]; } vvp_wide_fun_core::~vvp_wide_fun_core() { delete[]port_values_; } void vvp_wide_fun_core::propagate_vec4(const vvp_vector4_t&bit, vvp_time64_t delay) { if (delay) schedule_assign_vector(ptr_->out, bit, delay); else vvp_send_vec4(ptr_->out, bit); } unsigned vvp_wide_fun_core::port_count() const { return nports_; } vvp_vector4_t& vvp_wide_fun_core::value(unsigned idx) { assert(idx < nports_); return port_values_[idx]; } void vvp_wide_fun_core::dispatch_vec4_from_input_(unsigned port, vvp_vector4_t bit) { assert(port < nports_); port_values_[port] = bit; recv_vec4_from_inputs(port); } vvp_wide_fun_t::vvp_wide_fun_t(vvp_wide_fun_core*c, unsigned base) : core_(c), port_base_(base) { } vvp_wide_fun_t::~vvp_wide_fun_t() { } void vvp_wide_fun_t::recv_vec4(vvp_net_ptr_t port, vvp_vector4_t bit) { unsigned pidx = port_base_ + port.port(); core_->dispatch_vec4_from_input_(pidx, bit); } /* **** vvp_scalar_t methods **** */ /* * DRIVE STRENGTHS: * * The normal functor is not aware of strengths. It generates strength * simply by virtue of having strength specifications. The drive * strength specification includes a drive0 and drive1 strength, each * with 8 possible values (that can be represented in 3 bits) as given * in this table: * * HiZ = 0, * SMALL = 1, * MEDIUM = 2, * WEAK = 3, * LARGE = 4, * PULL = 5, * STRONG = 6, * SUPPLY = 7 * * The vvp_scalar_t value, however, is a combination of value and * strength, used in strength-aware contexts. * * OUTPUT STRENGTHS: * * The strength-aware values are specified as an 8 bit value, that is * two 4 bit numbers. The value is encoded with two drive strengths (0-7) * and two drive values (0 or 1). Each nibble contains three bits of * strength and one bit of value, like so: VSSS. The high nibble has * the strength-value closest to supply1, and the low nibble has the * strength-value closest to supply0. */ /* * A signal value is unambiguous if the top 4 bits and the bottom 4 * bits are identical. This means that the VSSSvsss bits of the 8bit * value have V==v and SSS==sss. */ # define UNAMBIG(v) (((v) & 0x0f) == (((v) >> 4) & 0x0f)) #if 0 # define STREN1(v) ( ((v)&0x80)? ((v)&0xf0) : (0x70 - ((v)&0xf0)) ) # define STREN0(v) ( ((v)&0x08)? ((v)&0x0f) : (0x07 - ((v)&0x0f)) ) #else # define STREN1(v) (((v)&0x70) >> 4) # define STREN0(v) ((v)&0x07) #endif vvp_scalar_t::vvp_scalar_t(vvp_bit4_t val, unsigned str) { assert(str <= 7); if (str == 0) val = BIT4_Z; switch (val) { case BIT4_0: value_ = str | (str<<4); break; case BIT4_1: value_ = str | (str<<4) | 0x88; break; case BIT4_X: value_ = str | (str<<4) | 0x80; break; case BIT4_Z: value_ = 0; break; } } vvp_scalar_t::vvp_scalar_t(vvp_bit4_t val, unsigned str0, unsigned str1) { assert(str0 <= 7); assert(str1 <= 7); if (str0 == 0 && str1 == 0) val = BIT4_Z; switch (val) { case BIT4_0: value_ = str0 | (str0<<4); break; case BIT4_1: value_ = str1 | (str1<<4) | 0x88; break; case BIT4_X: value_ = str0 | (str1<<4) | 0x80; break; case BIT4_Z: value_ = 0x00; break; } } vvp_scalar_t::vvp_scalar_t() { value_ = 0; } vvp_bit4_t vvp_scalar_t::value() const { if (value_ == 0) { return BIT4_Z; } else switch (value_ & 0x88) { case 0x00: return BIT4_0; case 0x88: return BIT4_1; default: return BIT4_X; } } unsigned vvp_scalar_t::strength0() const { return STREN0(value_); } unsigned vvp_scalar_t::strength1() const { return STREN1(value_); } ostream& operator <<(ostream&out, vvp_scalar_t a) { out << a.strength0() << a.strength1(); switch (a.value()) { case BIT4_0: out << "0"; break; case BIT4_1: out << "1"; break; case BIT4_X: out << "X"; break; case BIT4_Z: out << "Z"; break; } return out; } vvp_scalar_t resolve(vvp_scalar_t a, vvp_scalar_t b) { // If the value is 0, that is the same as HiZ. In that case, // resolution is simply a matter of returning the *other* value. if (a.value_ == 0) return b; if (b.value_ == 0) return a; vvp_scalar_t res = a; if (UNAMBIG(a.value_) && UNAMBIG(b.value_)) { /* If both signals are unambiguous, simply choose the stronger. If they have the same strength but different values, then this becomes ambiguous. */ if (a.value_ == b.value_) { /* values are equal. do nothing. */ } else if ((b.value_&0x07) > (res.value_&0x07)) { /* New value is stronger. Take it. */ res.value_ = b.value_; } else if ((b.value_&0x77) == (res.value_&0x77)) { /* Strengths are the same. Make value ambiguous. */ res.value_ = (res.value_&0x70) | (b.value_&0x07) | 0x80; } else { /* Must be res is the stronger one. */ } } else if (UNAMBIG(res.value_)) { unsigned tmp = 0; if ((res.value_&0x70) > (b.value_&0x70)) tmp |= res.value_&0xf0; else tmp |= b.value_&0xf0; if ((res.value_&0x07) > (b.value_&0x07)) tmp |= res.value_&0x0f; else tmp |= b.value_&0x0f; res.value_ = tmp; } else if (UNAMBIG(b.value_)) { /* If one of the signals is unambiguous, then it will sweep up the weaker parts of the ambiguous signal. The result may be ambiguous, or maybe not. */ unsigned tmp = 0; if ((b.value_&0x70) > (res.value_&0x70)) tmp |= b.value_&0xf0; else tmp |= res.value_&0xf0; if ((b.value_&0x07) > (res.value_&0x07)) tmp |= b.value_&0x0f; else tmp |= res.value_&0x0f; res.value_ = tmp; } else { /* If both signals are ambiguous, then the result has an even wider ambiguity. */ unsigned tmp = 0; int sv1a = a.value_&0x80 ? STREN1(a.value_) : - STREN1(a.value_); int sv0a = a.value_&0x08 ? STREN0(a.value_) : - STREN0(a.value_); int sv1b = b.value_&0x80 ? STREN1(b.value_) : - STREN1(b.value_); int sv0b = b.value_&0x08 ? STREN0(b.value_) : - STREN0(b.value_); int sv1 = sv1a; int sv0 = sv0a; if (sv0a > sv1) sv1 = sv0a; if (sv1b > sv1) sv1 = sv1b; if (sv0b > sv1) sv1 = sv0b; if (sv1a < sv0) sv0 = sv1a; if (sv1b < sv0) sv0 = sv1b; if (sv0b < sv0) sv0 = sv0b; if (sv1 > 0) { tmp |= 0x80; tmp |= sv1 << 4; } else { tmp |= (-sv1) << 4; } if (sv0 > 0) { tmp |= 0x08; tmp |= sv0; } else { tmp |= (-sv0); } res.value_ = tmp; } /* Canonicalize the HiZ value. */ if ((res.value_&0x77) == 0) res.value_ = 0; return res; } vvp_vector8_t resolve(const vvp_vector8_t&a, const vvp_vector8_t&b) { assert(a.size() == b.size()); vvp_vector8_t out (a.size()); for (unsigned idx = 0 ; idx < out.size() ; idx += 1) { out.set_bit(idx, resolve(a.value(idx), b.value(idx))); } return out; } vvp_vector4_t reduce4(const vvp_vector8_t&that) { vvp_vector4_t out (that.size()); for (unsigned idx = 0 ; idx < out.size() ; idx += 1) out.set_bit(idx, that.value(idx).value()); return out; } vvp_bit4_t compare_gtge(const vvp_vector4_t&lef, const vvp_vector4_t&rig, vvp_bit4_t out_if_equal) { unsigned min_size = lef.size(); if (rig.size() < min_size) min_size = rig.size(); // If one of the inputs is nil, treat is as all X values, and // that makes the result BIT4_X. if (min_size == 0) return BIT4_X; // As per the IEEE1364 definition of >, >=, < and <=, if there // are any X or Z values in either of the operand vectors, // then the result of the compare is BIT4_X. // Check for X/Z in the left operand for (unsigned idx = 0 ; idx < lef.size() ; idx += 1) { vvp_bit4_t bit = lef.value(idx); if (bit == BIT4_X) return BIT4_X; if (bit == BIT4_Z) return BIT4_X; } // Check for X/Z in the right operand for (unsigned idx = 0 ; idx < rig.size() ; idx += 1) { vvp_bit4_t bit = rig.value(idx); if (bit == BIT4_X) return BIT4_X; if (bit == BIT4_Z) return BIT4_X; } for (unsigned idx = lef.size() ; idx > rig.size() ; idx -= 1) { if (lef.value(idx-1) == BIT4_1) return BIT4_1; } for (unsigned idx = rig.size() ; idx > lef.size() ; idx -= 1) { if (rig.value(idx-1) == BIT4_1) return BIT4_0; } for (unsigned idx = min_size ; idx > 0 ; idx -= 1) { vvp_bit4_t lv = lef.value(idx-1); vvp_bit4_t rv = rig.value(idx-1); if (lv == rv) continue; if (lv == BIT4_1) return BIT4_1; else return BIT4_0; } return out_if_equal; } vvp_vector4_t operator ~ (const vvp_vector4_t&that) { vvp_vector4_t res (that.size()); for (unsigned idx = 0 ; idx < res.size() ; idx += 1) res.set_bit(idx, ~ that.value(idx)); return res; } vvp_bit4_t compare_gtge_signed(const vvp_vector4_t&a, const vvp_vector4_t&b, vvp_bit4_t out_if_equal) { assert(a.size() == b.size()); unsigned sign_idx = a.size()-1; vvp_bit4_t a_sign = a.value(sign_idx); vvp_bit4_t b_sign = b.value(sign_idx); if (a_sign == BIT4_X) return BIT4_X; if (a_sign == BIT4_Z) return BIT4_X; if (b_sign == BIT4_X) return BIT4_X; if (b_sign == BIT4_Z) return BIT4_Z; if (a_sign == b_sign) return compare_gtge(a, b, out_if_equal); for (unsigned idx = 0 ; idx < sign_idx ; idx += 1) { vvp_bit4_t a_bit = a.value(idx); vvp_bit4_t b_bit = a.value(idx); if (a_bit == BIT4_X) return BIT4_X; if (a_bit == BIT4_Z) return BIT4_X; if (b_bit == BIT4_X) return BIT4_X; if (b_bit == BIT4_Z) return BIT4_Z; } if(a_sign == BIT4_0) return BIT4_1; else return BIT4_0; } /* * $Log: vvp_net.cc,v $ * Revision 1.26 2005/04/28 04:59:53 steve * Remove dead functor code. * * Revision 1.25 2005/04/25 04:42:17 steve * vvp_fun_signal eliminates duplicate propagations. * * Revision 1.24 2005/04/13 06:34:20 steve * Add vvp driver functor for logic outputs, * Add ostream output operators for debugging. * * Revision 1.23 2005/04/09 06:00:58 steve * scalars with 0-drivers are hiZ by definition. * * Revision 1.22 2005/04/09 05:30:38 steve * Default behavior for recv_vec8 methods. * * Revision 1.21 2005/04/03 05:45:51 steve * Rework the vvp_delay_t class. * * Revision 1.20 2005/04/01 06:02:45 steve * Reimplement combinational UDPs. * * Revision 1.19 2005/03/18 02:56:04 steve * Add support for LPM_UFUNC user defined functions. * * Revision 1.18 2005/03/12 04:27:43 steve * Implement VPI access to signal strengths, * Fix resolution of ambiguous drive pairs, * Fix spelling of scalar. * * Revision 1.17 2005/02/14 01:50:23 steve * Signals may receive part vectors from %set/x0 * instructions. Re-implement the %set/x0 to do * just that. Remove the useless %set/x0/x instruction. * * Revision 1.16 2005/02/12 06:13:22 steve * Add debug dumps for vectors, and fix vvp_scaler_t make from BIT4_X values. * * Revision 1.15 2005/02/10 04:54:41 steve * Simplify vvp_scaler strength representation. * * Revision 1.14 2005/02/07 22:42:42 steve * Add .repeat functor and BIFIF functors. * * Revision 1.13 2005/02/04 05:13:02 steve * Add wide .arith/mult, and vvp_vector2_t vectors. * * Revision 1.12 2005/02/03 04:55:13 steve * Add support for reduction logic gates. * * Revision 1.11 2005/01/30 05:06:49 steve * Get .arith/sub working. * * Revision 1.10 2005/01/29 17:52:06 steve * move AND to buitin instead of table. * * Revision 1.9 2005/01/28 05:34:25 steve * Add vector4 implementation of .arith/mult. * * Revision 1.8 2005/01/22 17:36:15 steve * .cmp/x supports signed magnitude compare. * * Revision 1.7 2005/01/22 00:58:22 steve * Implement the %load/x instruction. * * Revision 1.6 2005/01/16 04:19:08 steve * Reimplement comparators as vvp_vector4_t nodes. * * Revision 1.5 2005/01/09 20:11:16 steve * Add the .part/pv node and related functionality. * * Revision 1.4 2005/01/01 02:12:34 steve * vvp_fun_signal propagates vvp_vector8_t vectors when appropriate * * Revision 1.3 2004/12/31 06:00:06 steve * Implement .resolv functors, and stub signals recv_vec8 method. * * Revision 1.2 2004/12/15 17:16:08 steve * Add basic force/release capabilities. * * Revision 1.1 2004/12/11 02:31:30 steve * Rework of internals to carry vectors through nexus instead * of single bits. Make the ivl, tgt-vvp and vvp initial changes * down this path. * */