/* * Copyright (c) 2001-2013 Stephen Williams (steve@icarus.com) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ # include "resolv.h" # include "schedule.h" # include "compile.h" # include "statistics.h" # include # include # include /* * The core functor for a resolver node stores all the input values * received by that node. This provides the necessary information * for implementing the $countdrivers system call. For efficency, * the resolver is implemented using a balanced quaternary tree, so * the core functor also stores the current value for each branch * of the tree, to eliminate the need to re-evaluate branches whose * inputs haven't changed. The tree values are flattened into a linear * array, with the input values stored at the start of the array, then * the next level of branch values, and so on, down to the final array * array element which stores the current output value. */ resolv_core::resolv_core(unsigned nports, vvp_net_t*net) : nports_(nports), net_(net) { count_functors_resolv += 1; } resolv_core::~resolv_core() { } void resolv_core::recv_vec4_pv_(unsigned port, const vvp_vector4_t&bit, unsigned base, unsigned wid, unsigned vwid) { assert(bit.size() == wid); vvp_vector4_t res (vwid); for (unsigned idx = 0 ; idx < base ; idx += 1) res.set_bit(idx, BIT4_Z); for (unsigned idx = 0 ; idx < wid && idx+base < vwid; idx += 1) res.set_bit(idx+base, bit.value(idx)); for (unsigned idx = base+wid ; idx < vwid ; idx += 1) res.set_bit(idx, BIT4_Z); recv_vec4_(port, res); } void resolv_core::recv_vec8_pv_(unsigned port, const vvp_vector8_t&bit, unsigned base, unsigned wid, unsigned vwid) { assert(bit.size() == wid); vvp_vector8_t res (vwid); for (unsigned idx = 0 ; idx < base ; idx += 1) res.set_bit(idx, vvp_scalar_t()); for (unsigned idx = 0 ; idx < wid && idx+base < vwid; idx += 1) res.set_bit(idx+base, bit.value(idx)); for (unsigned idx = base+wid ; idx < vwid ; idx += 1) res.set_bit(idx, vvp_scalar_t()); recv_vec8_(port, res); } resolv_extend::resolv_extend(resolv_core*core, unsigned port_base) : core_(core), port_base_(port_base) { } resolv_extend::~resolv_extend() { } resolv_tri::resolv_tri(unsigned nports, vvp_net_t*net, vvp_scalar_t hiz_value) : resolv_core(nports, net), hiz_value_(hiz_value) { // count the input (leaf) nodes unsigned nnodes = nports; // add in the intermediate branch nodes while (nports > 4) { nports = (nports + 3) / 4; nnodes += nports; } // add one more node for storing the output value // (not needed if there is only one input) if (nnodes > 1) nnodes += 1; val_ = new vvp_vector8_t [nnodes]; } resolv_tri::~resolv_tri() { delete[] val_; } void resolv_tri::recv_vec4_(unsigned port, const vvp_vector4_t&bit) { recv_vec8_(port, vvp_vector8_t(bit, 6,6 /* STRONG */)); } void resolv_tri::recv_vec8_(unsigned port, const vvp_vector8_t&bit) { assert(port < nports_); if (val_[port].eeq(bit)) return; val_[port] = bit; // Starting at the leaf level, work down the tree, resolving // the changed values. base is the first node in the current // level and span is the number of nodes at that level. ip // is the first node in the group of four nodes at that level // that include the node that has changed, and op is the node // at the next level that stores the resolved value from that // group. unsigned base = 0; unsigned span = nports_; while (span > 1) { unsigned next_base = base + span; unsigned ip = base + (port & ~0x3); unsigned op = next_base + (port / 4); unsigned ll = min(ip + 4, next_base); vvp_vector8_t out = val_[ip]; for (ip = ip + 1; ip < ll; ip += 1) { if (val_[ip].size() == 0) continue; if (out.size() == 0) out = val_[ip]; else out = resolve(out, val_[ip]); } if (val_[op].eeq(out)) return; val_[op] = out; base = next_base; span = (span + 3) / 4; port = port / 4; } if (! hiz_value_.is_hiz()) { for (unsigned idx = 0 ; idx < val_[base].size() ; idx += 1) { val_[base].set_bit(idx, resolve(val_[base].value(idx), hiz_value_)); } } net_->send_vec8(val_[base]); } void resolv_tri::count_drivers(unsigned bit_idx, unsigned counts[3]) { for (unsigned idx = 0 ; idx < nports_ ; idx += 1) { if (val_[idx].size() == 0) continue; update_driver_counts(val_[idx].value(bit_idx).value(), counts); } } resolv_wired_logic::resolv_wired_logic(unsigned nports, vvp_net_t*net) : resolv_core(nports, net) { // count the input (leaf) nodes unsigned nnodes = nports; // add in the intermediate branch nodes while (nports > 4) { nports = (nports + 3) / 4; nnodes += nports; } // add one more node for storing the output value // (not needed if there is only one input) if (nnodes > 1) nnodes += 1; val_ = new vvp_vector4_t [nnodes]; } resolv_wired_logic::~resolv_wired_logic() { delete[] val_; } void resolv_wired_logic::recv_vec4_(unsigned port, const vvp_vector4_t&bit) { assert(port < nports_); if (val_[port].eeq(bit)) return; val_[port] = bit; // Starting at the leaf level, work down the tree, resolving // the changed values. base is the first node in the current // level and span is the number of nodes at that level. ip // is the first node in the group of four nodes at that level // that include the node that has changed, and op is the node // at the next level that stores the resolved value from that // group. unsigned base = 0; unsigned span = nports_; while (span > 1) { unsigned next_base = base + span; unsigned ip = base + (port & ~0x3); unsigned op = next_base + (port / 4); unsigned ll = min(ip + 4, next_base); vvp_vector4_t out = val_[ip]; for (ip = ip + 1; ip < ll; ip += 1) { if (val_[ip].size() == 0) continue; if (out.size() == 0) out = val_[ip]; else out = wired_logic_math_(out, val_[ip]); } if (val_[op].eeq(out)) return; val_[op] = out; base = next_base; span = (span + 3) / 4; port = port / 4; } net_->send_vec4(val_[base], 0); } void resolv_wired_logic::recv_vec8_(unsigned port, const vvp_vector8_t&bit) { recv_vec4_(port, reduce4(bit)); } void resolv_wired_logic::count_drivers(unsigned bit_idx, unsigned counts[3]) { for (unsigned idx = 0 ; idx < nports_ ; idx += 1) { if (val_[idx].size() == 0) continue; update_driver_counts(val_[idx].value(bit_idx), counts); } } resolv_triand::resolv_triand(unsigned nports, vvp_net_t*net) : resolv_wired_logic(nports, net) { } resolv_triand::~resolv_triand() { } vvp_vector4_t resolv_triand::wired_logic_math_(vvp_vector4_t&a, vvp_vector4_t&b) { assert(a.size() == b.size()); vvp_vector4_t out (a.size()); for (unsigned idx = 0 ; idx < out.size() ; idx += 1) { vvp_bit4_t abit = a.value(idx); vvp_bit4_t bbit = b.value(idx); if (abit == BIT4_Z) { out.set_bit(idx, bbit); } else if (bbit == BIT4_Z) { out.set_bit(idx, abit); } else if (abit == BIT4_0 || bbit == BIT4_0) { out.set_bit(idx, BIT4_0); } else if (abit == BIT4_X || bbit == BIT4_X) { out.set_bit(idx, BIT4_X); } else { out.set_bit(idx, BIT4_1); } } return out; } resolv_trior::resolv_trior(unsigned nports, vvp_net_t*net) : resolv_wired_logic(nports, net) { } resolv_trior::~resolv_trior() { } vvp_vector4_t resolv_trior::wired_logic_math_(vvp_vector4_t&a, vvp_vector4_t&b) { assert(a.size() == b.size()); vvp_vector4_t out (a.size()); for (unsigned idx = 0 ; idx < out.size() ; idx += 1) { vvp_bit4_t abit = a.value(idx); vvp_bit4_t bbit = b.value(idx); if (abit == BIT4_Z) { out.set_bit(idx, bbit); } else if (bbit == BIT4_Z) { out.set_bit(idx, abit); } else if (abit == BIT4_1 || bbit == BIT4_1) { out.set_bit(idx, BIT4_1); } else if (abit == BIT4_X || bbit == BIT4_X) { out.set_bit(idx, BIT4_X); } else { out.set_bit(idx, BIT4_0); } } return out; }