/* * Copyright (c) 2005-2016 Stephen Williams (steve@icarus.com) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ # include "compile.h" # include "schedule.h" # include "dff.h" # include # include # include # include # include /* We need to ensure an initial output value is propagated. This is achieved by setting asc_ to BIT4_Z to flag that we haven't yet propagated an output value. This will also disable clocked output. For flip-flops without an asynchronous set/clear, we schedule an initial value of BIT4_0 to be sent to port 3. For flip-flops with an asynchronous set/clear, we rely on the network propagating an initial value to port 3. The first value received on port 3 will either propagate the set/clear value (if the received value is BIT4_1) or will propagate an initial value of 'bx. From then on the flip-flop operates normally. */ vvp_dff::vvp_dff(unsigned width, bool negedge) : clk_(BIT4_X), ena_(BIT4_X), asc_(BIT4_Z), d_(width, BIT4_X) { clk_active_ = negedge ? BIT4_0 : BIT4_1; } vvp_dff::~vvp_dff() { } vvp_dff_aclr::vvp_dff_aclr(unsigned width, bool negedge) : vvp_dff(width, negedge) { } vvp_dff_aset::vvp_dff_aset(unsigned width, bool negedge) : vvp_dff(width, negedge) { } vvp_dff_asc::vvp_dff_asc(unsigned width, bool negedge, char*asc_value) : vvp_dff(width, negedge) { asc_value_ = c4string_to_vector4(asc_value); } void vvp_dff::recv_vec4(vvp_net_ptr_t port, const vvp_vector4_t&bit, vvp_context_t) { vvp_bit4_t tmp; switch (port.port()) { case 0: // D d_ = bit; break; case 1: // CLK assert(bit.size() == 1); if (asc_ != BIT4_0) break; if (ena_ != BIT4_1) break; tmp = clk_; clk_ = bit.value(0); if (clk_ == clk_active_ && tmp != clk_active_) port.ptr()->send_vec4(d_, 0); break; case 2: // CE assert(bit.size() == 1); ena_ = bit.value(0); break; case 3: // asynch SET/CLR assert(bit.size() == 1); tmp = asc_; asc_ = bit.value(0); if (asc_ == BIT4_1 && tmp != BIT4_1) recv_async(port); else if (tmp == BIT4_Z) port.ptr()->send_vec4(vvp_vector4_t(d_.size(), BIT4_X), 0); break; } } void vvp_dff::recv_vec4_pv(vvp_net_ptr_t ptr, const vvp_vector4_t&bit, unsigned base, unsigned wid, unsigned vwid, vvp_context_t ctx) { recv_vec4_pv_(ptr, bit, base, wid, vwid, ctx); } /* * The recv_async functions respond to the asynchronous * set/clear input by propagating the desired output. * * NOTE: Don't touch the d_ value, because that tracks the D input, * which may be needed when the device is clocked afterwards. */ void vvp_dff::recv_async(vvp_net_ptr_t) { // The base dff does not have an asynchronous set/clr input. assert(0); } void vvp_dff_aclr::recv_async(vvp_net_ptr_t port) { port.ptr()->send_vec4(vvp_vector4_t(d_.size(), BIT4_0), 0); } void vvp_dff_aset::recv_async(vvp_net_ptr_t port) { port.ptr()->send_vec4(vvp_vector4_t(d_.size(), BIT4_1), 0); } void vvp_dff_asc::recv_async(vvp_net_ptr_t port) { port.ptr()->send_vec4(asc_value_, 0); } void compile_dff(char*label, unsigned width, bool negedge, struct symb_s arg_d, struct symb_s arg_c, struct symb_s arg_e) { vvp_net_t*ptr = new vvp_net_t; vvp_dff*fun = new vvp_dff(width, negedge); ptr->fun = fun; define_functor_symbol(label, ptr); free(label); input_connect(ptr, 0, arg_d.text); input_connect(ptr, 1, arg_c.text); input_connect(ptr, 2, arg_e.text); vvp_vector4_t init_val = vvp_vector4_t(1, BIT4_0); schedule_init_vector(vvp_net_ptr_t(ptr,3), init_val); } void compile_dff_aclr(char*label, unsigned width, bool negedge, struct symb_s arg_d, struct symb_s arg_c, struct symb_s arg_e, struct symb_s arg_a) { vvp_net_t*ptr = new vvp_net_t; vvp_dff*fun = new vvp_dff_aclr(width, negedge); ptr->fun = fun; define_functor_symbol(label, ptr); free(label); input_connect(ptr, 0, arg_d.text); input_connect(ptr, 1, arg_c.text); input_connect(ptr, 2, arg_e.text); input_connect(ptr, 3, arg_a.text); } void compile_dff_aset(char*label, unsigned width, bool negedge, struct symb_s arg_d, struct symb_s arg_c, struct symb_s arg_e, struct symb_s arg_a, char*asc_value) { vvp_net_t*ptr = new vvp_net_t; vvp_dff*fun; if (asc_value) { assert(c4string_test(asc_value)); fun = new vvp_dff_asc(width, negedge, asc_value); free(asc_value); } else { fun = new vvp_dff_aset(width, negedge); } ptr->fun = fun; define_functor_symbol(label, ptr); free(label); input_connect(ptr, 0, arg_d.text); input_connect(ptr, 1, arg_c.text); input_connect(ptr, 2, arg_e.text); input_connect(ptr, 3, arg_a.text); }