/* * Copyright (c) 2000-2018 Stephen Williams (steve@icarus.com) * Copyright CERN 2013 / Stephen Williams (steve@icarus.com) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ # include "config.h" # include # include # include // sprintf() # include "compiler.h" # include "t-dll.h" # include "netclass.h" # include "netmisc.h" # include "discipline.h" # include # include "ivl_assert.h" # include "ivl_alloc.h" struct dll_target dll_target_obj; #if defined(__WIN32__) inline ivl_dll_t ivl_dlopen(const char *name) { ivl_dll_t res = (ivl_dll_t) LoadLibrary(name); return res; } inline void * ivl_dlsym(ivl_dll_t dll, const char *nm) { return (void*)GetProcAddress((HMODULE)dll, nm); } inline void ivl_dlclose(ivl_dll_t dll) { FreeLibrary((HMODULE)dll); } const char *dlerror(void) { static char msg[256]; unsigned long err = GetLastError(); FormatMessage( FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), // Default language (LPTSTR) &msg, sizeof(msg) - 1, NULL ); return msg; } #elif defined(HAVE_DLFCN_H) inline ivl_dll_t ivl_dlopen(const char*name) { return dlopen(name,RTLD_LAZY); } inline void* ivl_dlsym(ivl_dll_t dll, const char*nm) { void*sym = dlsym(dll, nm); /* Not found? try without the leading _ */ if (sym == 0 && nm[0] == '_') sym = dlsym(dll, nm+1); return sym; } inline void ivl_dlclose(ivl_dll_t dll) { dlclose(dll); } #elif defined(HAVE_DL_H) inline ivl_dll_t ivl_dlopen(const char*name) { return shl_load(name, BIND_IMMEDIATE, 0); } inline void* ivl_dlsym(ivl_dll_t dll, const char*nm) { void*sym; int rc = shl_findsym(&dll, nm, TYPE_PROCEDURE, &sym); return (rc == 0) ? sym : 0; } inline void ivl_dlclose(ivl_dll_t dll) { shl_unload(dll); } inline const char*dlerror(void) { return strerror( errno ); } #endif /* * The custom new operator for the ivl_nexus_s type allows us to * allocate nexus objects in blocks. There are generally lots of them * permanently allocated, and allocating them in blocks reduces the * allocation overhead. */ template void* pool_permalloc(size_t s) { static TYPE * pool_ptr = 0; static int pool_remaining = 0; static const size_t POOL_SIZE = 4096; assert(s == sizeof(TYPE)); if (pool_remaining <= 0) { pool_ptr = new TYPE[POOL_SIZE]; pool_remaining = POOL_SIZE; } TYPE*tmp = pool_ptr; pool_ptr += 1; pool_remaining -= 1; return tmp; } void* ivl_nexus_s::operator new(size_t s) { return pool_permalloc(s); } void ivl_nexus_s::operator delete(void*, size_t) { assert(0); } void* ivl_net_const_s::operator new(size_t s) { return pool_permalloc(s); } void ivl_net_const_s::operator delete(void*, size_t) { assert(0); } static StringHeapLex net_const_strings; static perm_string make_scope_name(const hname_t&name) { if (! name.has_numbers()) return name.peek_name(); char buf[1024]; snprintf(buf, sizeof buf, "%s", name.peek_name().str()); char*cp = buf + strlen(buf); size_t ncp = sizeof buf - (cp-buf); for (size_t idx = 0 ; idx < name.has_numbers() ; idx += 1) { int len = snprintf(cp, ncp, "[%d]", name.peek_number(idx)); cp += len; ncp -= len; } return lex_strings.make(buf); } static void drive_from_link(const Link&lnk, ivl_drive_t&drv0, ivl_drive_t&drv1) { drv0 = lnk.drive0(); drv1 = lnk.drive1(); } ivl_attribute_s* dll_target::fill_in_attributes(const Attrib*net) { ivl_attribute_s*attr; unsigned nattr = net->attr_cnt(); if (nattr == 0) return 0; attr = new struct ivl_attribute_s[nattr]; for (unsigned idx = 0 ; idx < nattr ; idx += 1) { verinum tmp = net->attr_value(idx); attr[idx].key = net->attr_key(idx); if (tmp.is_string()) { attr[idx].type = IVL_ATT_STR; attr[idx].val.str = strings_.add(tmp.as_string().c_str()); } else if (tmp == verinum()) { attr[idx].type = IVL_ATT_VOID; } else { attr[idx].type = IVL_ATT_NUM; attr[idx].val.num = tmp.as_long(); } } return attr; } /* * This function locates an ivl_scope_t object that matches the * NetScope object. The search works by looking for the parent scope, * then scanning the parent scope for the NetScope object. */ static ivl_scope_t find_scope_from_root(ivl_scope_t root, const NetScope*cur) { if (const NetScope*par = cur->parent()) { ivl_scope_t parent = find_scope_from_root(root, par); if (parent == 0) { return 0; } map::iterator idx = parent->children.find(cur->fullname()); if (idx == parent->children.end()) return 0; else return idx->second; } else { perm_string cur_name = make_scope_name(cur->fullname()); if (strcmp(root->name_, cur_name) == 0) return root; } return 0; } ivl_scope_t dll_target::find_scope(ivl_design_s &des, const NetScope*cur) { assert(cur); // If the scope is a PACKAGE, then it is a special kind of // root scope and it in the packages array instead. if (cur->type() == NetScope::PACKAGE) { perm_string cur_name = cur->module_name(); for (size_t idx = 0 ; idx < des.packages.size() ; idx += 1) { if (des.packages[idx]->name_ == cur_name) return des.packages[idx]; } return 0; } if (cur->type() == NetScope::CLASS) { ivl_scope_t tmp = des.classes[cur]; return tmp; } if (cur->type()==NetScope::TASK || cur->type()==NetScope::FUNC) { map::const_iterator idx = des.root_tasks.find(cur); if (idx != des.root_tasks.end()) return idx->second; } for (unsigned idx = 0; idx < des.roots.size(); idx += 1) { assert(des.roots[idx]); ivl_scope_t scope = find_scope_from_root(des.roots[idx], cur); if (scope) return scope; } for (size_t idx = 0; idx < des.packages.size(); idx += 1) { assert(des.packages[idx]); ivl_scope_t scope = find_scope_from_root(des.packages[idx], cur); if (scope) return scope; } for (map::iterator idx = des.classes.begin() ; idx != des.classes.end() ; ++ idx) { ivl_scope_t scope = find_scope_from_root(idx->second, cur); if (scope) return scope; } for (map::iterator idx = des.root_tasks.begin() ; idx != des.root_tasks.end() ; ++ idx) { ivl_scope_t scope = find_scope_from_root(idx->second, cur); if (scope) return scope; } return 0; } ivl_scope_t dll_target::lookup_scope_(const NetScope*cur) { return find_scope(des_, cur); } /* * This is a convenience function to locate an ivl_signal_t object * given the NetESignal that has the signal name. */ ivl_signal_t dll_target::find_signal(ivl_design_s &des, const NetNet*net) { ivl_scope_t scope = find_scope(des, net->scope()); assert(scope); perm_string nname = net->name(); for (unsigned idx = 0 ; idx < scope->sigs_.size() ; idx += 1) { if (strcmp(scope->sigs_[idx]->name_, nname) == 0) return scope->sigs_[idx]; } assert(0); return 0; } static ivl_nexus_t nexus_sig_make(ivl_signal_t net, unsigned pin) { ivl_nexus_t tmp = new struct ivl_nexus_s; tmp->ptrs_.resize(1); tmp->ptrs_[0].pin_ = pin; tmp->ptrs_[0].type_ = __NEXUS_PTR_SIG; tmp->ptrs_[0].l.sig = net; ivl_drive_t drive = IVL_DR_HiZ; switch (ivl_signal_type(net)) { case IVL_SIT_REG: drive = IVL_DR_STRONG; break; default: break; } tmp->ptrs_[0].drive0 = drive; tmp->ptrs_[0].drive1 = drive; return tmp; } static void nexus_sig_add(ivl_nexus_t nex, ivl_signal_t net, unsigned pin) { unsigned top = nex->ptrs_.size(); nex->ptrs_.resize(top+1); ivl_drive_t drive = IVL_DR_HiZ; switch (ivl_signal_type(net)) { case IVL_SIT_REG: drive = IVL_DR_STRONG; break; default: break; } nex->ptrs_[top].type_= __NEXUS_PTR_SIG; nex->ptrs_[top].drive0 = drive; nex->ptrs_[top].drive1 = drive; nex->ptrs_[top].pin_ = pin; nex->ptrs_[top].l.sig= net; } static void nexus_bra_add(ivl_nexus_t nex, ivl_branch_t net, unsigned pin) { unsigned top = nex->ptrs_.size(); nex->ptrs_.resize(top+1); nex->ptrs_[top].type_= __NEXUS_PTR_BRA; nex->ptrs_[top].drive0 = 0; nex->ptrs_[top].drive1 = 0; nex->ptrs_[top].pin_ = pin; nex->ptrs_[top].l.bra= net; } /* * Add the pin of the logic object to the nexus, and return the nexus * pointer used for the pin. * * NOTE: This pointer is only valid until another pin is added to the * nexus. */ static ivl_nexus_ptr_t nexus_log_add(ivl_nexus_t nex, ivl_net_logic_t net, unsigned pin) { unsigned top = nex->ptrs_.size(); nex->ptrs_.resize(top+1); nex->ptrs_[top].type_= __NEXUS_PTR_LOG; nex->ptrs_[top].drive0 = (pin == 0)? IVL_DR_STRONG : IVL_DR_HiZ; nex->ptrs_[top].drive1 = (pin == 0)? IVL_DR_STRONG : IVL_DR_HiZ; nex->ptrs_[top].pin_ = pin; nex->ptrs_[top].l.log= net; return & (nex->ptrs_[top]); } static void nexus_con_add(ivl_nexus_t nex, ivl_net_const_t net, unsigned pin, ivl_drive_t drive0, ivl_drive_t drive1) { unsigned top = nex->ptrs_.size(); nex->ptrs_.resize(top+1); nex->ptrs_[top].type_= __NEXUS_PTR_CON; nex->ptrs_[top].drive0 = drive0; nex->ptrs_[top].drive1 = drive1; nex->ptrs_[top].pin_ = pin; nex->ptrs_[top].l.con= net; } static void nexus_lpm_add(ivl_nexus_t nex, ivl_lpm_t net, unsigned pin, ivl_drive_t drive0, ivl_drive_t drive1) { unsigned top = nex->ptrs_.size(); nex->ptrs_.resize(top+1); nex->ptrs_[top].type_= __NEXUS_PTR_LPM; nex->ptrs_[top].drive0 = drive0; nex->ptrs_[top].drive1 = drive1; nex->ptrs_[top].pin_ = pin; nex->ptrs_[top].l.lpm= net; } static void nexus_switch_add(ivl_nexus_t nex, ivl_switch_t net, unsigned pin) { unsigned top = nex->ptrs_.size(); nex->ptrs_.resize(top+1); nex->ptrs_[top].type_= __NEXUS_PTR_SWI; nex->ptrs_[top].drive0 = IVL_DR_HiZ; nex->ptrs_[top].drive1 = IVL_DR_HiZ; nex->ptrs_[top].pin_ = pin; nex->ptrs_[top].l.swi= net; } void scope_add_logic(ivl_scope_t scope, ivl_net_logic_t net) { if (scope->nlog_ == 0) { scope->nlog_ = 1; scope->log_ = (ivl_net_logic_t*)malloc(sizeof(ivl_net_logic_t)); scope->log_[0] = net; } else { scope->nlog_ += 1; scope->log_ = (ivl_net_logic_t*) realloc(scope->log_, scope->nlog_*sizeof(ivl_net_logic_t)); scope->log_[scope->nlog_-1] = net; } } void scope_add_event(ivl_scope_t scope, ivl_event_t net) { if (scope->nevent_ == 0) { scope->nevent_ = 1; scope->event_ = (ivl_event_t*)malloc(sizeof(ivl_event_t)); scope->event_[0] = net; } else { scope->nevent_ += 1; scope->event_ = (ivl_event_t*) realloc(scope->event_, scope->nevent_*sizeof(ivl_event_t)); scope->event_[scope->nevent_-1] = net; } } static void scope_add_lpm(ivl_scope_t scope, ivl_lpm_t net) { if (scope->nlpm_ == 0) { assert(scope->lpm_ == 0); scope->nlpm_ = 1; scope->lpm_ = (ivl_lpm_t*)malloc(sizeof(ivl_lpm_t)); scope->lpm_[0] = net; } else { assert(scope->lpm_); scope->nlpm_ += 1; scope->lpm_ = (ivl_lpm_t*) realloc(scope->lpm_, scope->nlpm_*sizeof(ivl_lpm_t)); scope->lpm_[scope->nlpm_-1] = net; } } static void scope_add_switch(ivl_scope_t scope, ivl_switch_t net) { scope->switches.push_back(net); } ivl_parameter_t dll_target::scope_find_param(ivl_scope_t scope, const char*name) { unsigned idx = 0; while (idx < scope->param.size()) { if (strcmp(name, scope->param[idx].basename) == 0) return &scope->param[idx]; idx += 1; } return 0; } /* * This method scans the parameters of the scope, and makes * ivl_parameter_t objects. This involves saving the name and scanning * the expression value. */ void dll_target::make_scope_parameters(ivl_scope_t scop, const NetScope*net) { if (net->parameters.empty()) { scop->param.clear(); return; } scop->param.resize(net->parameters.size()); unsigned idx = 0; typedef map::const_iterator pit_t; for (pit_t cur_pit = net->parameters.begin() ; cur_pit != net->parameters.end() ; ++ cur_pit ) { assert(idx < scop->param.size()); ivl_parameter_t cur_par = &scop->param[idx]; cur_par->basename = cur_pit->first; cur_par->local = cur_pit->second.local_flag; /* Either both the MSB and LSB expressions are provided or * neither are provided. */ if (cur_pit->second.msb) { assert(cur_pit->second.lsb); /* The MSB and LSB expressions must be integral constants. */ const NetEConst *msbc = dynamic_cast(cur_pit->second.msb); const NetEConst *lsbc = dynamic_cast(cur_pit->second.lsb); assert(msbc); assert(lsbc); cur_par->msb = msbc->value().as_long(); cur_par->lsb = lsbc->value().as_long(); } else { assert(! cur_pit->second.lsb); cur_par->msb = cur_pit->second.val->expr_width() - 1; assert(cur_par->msb >= 0); cur_par->lsb = 0; } cur_par->signed_flag = cur_pit->second.signed_flag; cur_par->scope = scop; FILE_NAME(cur_par, &(cur_pit->second)); NetExpr*etmp = cur_pit->second.val; if (etmp == 0) { cerr << "?:?: internal error: What is the parameter " << "expression for " << cur_pit->first << " in " << net->fullname() << "?" << endl; } assert(etmp); make_scope_param_expr(cur_par, etmp); idx += 1; } } void dll_target::make_scope_param_expr(ivl_parameter_t cur_par, NetExpr*etmp) { if (const NetEConst*e = dynamic_cast(etmp)) { expr_const(e); assert(expr_); switch (expr_->type_) { case IVL_EX_STRING: expr_->u_.string_.parameter = cur_par; break; case IVL_EX_NUMBER: expr_->u_.number_.parameter = cur_par; break; default: assert(0); } } else if (const NetECReal*er = dynamic_cast(etmp)) { expr_creal(er); assert(expr_); assert(expr_->type_ == IVL_EX_REALNUM); expr_->u_.real_.parameter = cur_par; } if (expr_ == 0) { cerr << etmp->get_fileline() << ": internal error: " << "Parameter expression not reduced to constant? " << *etmp << endl; } ivl_assert(*etmp, expr_); cur_par->value = expr_; expr_ = 0; } void dll_target::add_root(const NetScope *s) { ivl_scope_t root_ = new struct ivl_scope_s; perm_string name = s->basename(); root_->name_ = name; FILE_NAME(root_, s); root_->parent = 0; root_->nlog_ = 0; root_->log_ = 0; root_->nevent_ = 0; root_->event_ = 0; root_->nlpm_ = 0; root_->lpm_ = 0; root_->def = 0; make_scope_parameters(root_, s); root_->tname_ = root_->name_; root_->time_precision = s->time_precision(); root_->time_units = s->time_unit(); root_->nattr = s->attr_cnt(); root_->attr = fill_in_attributes(s); root_->is_auto = 0; root_->is_cell = s->is_cell(); switch (s->type()) { case NetScope::PACKAGE: root_->type_ = IVL_SCT_PACKAGE; break; case NetScope::MODULE: root_->type_ = IVL_SCT_MODULE; break; case NetScope::CLASS: root_->type_ = IVL_SCT_CLASS; break; case NetScope::TASK: { const NetTaskDef*def = s->task_def(); if (def == 0) { cerr << "?:?" << ": internal error: " << "task " << root_->name_ << " has no definition." << endl; } assert(def); root_->type_ = IVL_SCT_TASK; root_->tname_ = def->scope()->basename(); break; } break; case NetScope::FUNC: root_->type_ = IVL_SCT_FUNCTION; break; default: assert(0); } switch (s->type()) { case NetScope::MODULE: root_->ports = s->module_port_nets(); if (root_->ports > 0) { root_->u_.net = new NetNet*[root_->ports]; for (unsigned idx = 0; idx < root_->ports; idx += 1) { root_->u_.net[idx] = s->module_port_net(idx); } } root_->module_ports_info = s->module_port_info(); des_.roots.push_back(root_); break; case NetScope::PACKAGE: root_->ports = 0; des_.packages.push_back(root_); break; case NetScope::CLASS: root_->ports = 0; des_.classes[s] = root_; break; case NetScope::TASK: case NetScope::FUNC: des_.root_tasks[s] = root_; break; default: assert(0); break; } } bool dll_target::start_design(const Design*des) { const char*dll_path_ = des->get_flag("DLL"); dll_ = ivl_dlopen(dll_path_); if ((dll_ == 0) && (dll_path_[0] != '/')) { size_t len = strlen(basedir) + 1 + strlen(dll_path_) + 1; char*tmp = new char[len]; sprintf(tmp, "%s/%s", basedir, dll_path_); dll_ = ivl_dlopen(tmp); delete[]tmp; } if (dll_ == 0) { cerr << "error: " << dll_path_ << " failed to load." << endl; cerr << dll_path_ << ": " << dlerror() << endl; return false; } stmt_cur_ = 0; // Initialize the design object. des_.self = des; des_.time_precision = des->get_precision(); des_.disciplines.resize(disciplines.size()); unsigned idx = 0; for (map::const_iterator cur = disciplines.begin() ; cur != disciplines.end() ; ++ cur ) { des_.disciplines[idx] = cur->second; idx += 1; } assert(idx == des_.disciplines.size()); list scope_list = des->find_roottask_scopes(); for (list::const_iterator cur = scope_list.begin() ; cur != scope_list.end() ; ++ cur) { add_root(*cur); } scope_list = des->find_package_scopes(); for (list::const_iterator cur = scope_list.begin() ; cur != scope_list.end(); ++ cur ) { add_root(*cur); } scope_list = des->find_root_scopes(); for (list::const_iterator cur = scope_list.begin() ; cur != scope_list.end(); ++ cur ) { add_root(*cur); } target_ = (target_design_f)ivl_dlsym(dll_, LU "target_design" TU); if (target_ == 0) { cerr << dll_path_ << ": error: target_design entry " "point is missing." << endl; return false; } return true; } /* * Here ivl is telling us that the design is scanned completely, and * here is where we call the API to process the constructed design. */ int dll_target::end_design(const Design*) { int rc; if (errors == 0) { if (verbose_flag) { cout << " ... invoking target_design" << endl; } rc = (target_)(&des_); } else { if (verbose_flag) { cout << " ... skipping target_design due to errors." << endl; } rc = errors; } ivl_dlclose(dll_); return rc; } void dll_target::switch_attributes(struct ivl_switch_s *obj, const NetNode*net) { obj->nattr = net->attr_cnt(); obj->attr = fill_in_attributes(net); } void dll_target::logic_attributes(struct ivl_net_logic_s *obj, const NetNode*net) { obj->nattr = net->attr_cnt(); obj->attr = fill_in_attributes(net); } void dll_target::make_delays_(ivl_expr_t*delay, const NetObj*net) { delay[0] = 0; delay[1] = 0; delay[2] = 0; /* Translate delay expressions to ivl_target form. Try to preserve pointer equality, not as a rule but to save on expression trees. */ if (net->rise_time()) { expr_ = 0; net->rise_time()->expr_scan(this); delay[0] = expr_; expr_ = 0; } if (net->fall_time()) { if (net->fall_time() == net->rise_time()) { delay[1] = delay[0]; } else { expr_ = 0; net->fall_time()->expr_scan(this); delay[1] = expr_; expr_ = 0; } } if (net->decay_time()) { if (net->decay_time() == net->rise_time()) { delay[2] = delay[0]; } else { expr_ = 0; net->decay_time()->expr_scan(this); delay[2] = expr_; expr_ = 0; } } } void dll_target::make_logic_delays_(struct ivl_net_logic_s*obj, const NetObj*net) { make_delays_(obj->delay, net); } void dll_target::make_switch_delays_(struct ivl_switch_s*obj, const NetObj*net) { make_delays_(obj->delay, net); } void dll_target::make_lpm_delays_(struct ivl_lpm_s*obj, const NetObj*net) { make_delays_(obj->delay, net); } void dll_target::make_const_delays_(struct ivl_net_const_s*obj, const NetObj*net) { make_delays_(obj->delay, net); } bool dll_target::branch(const NetBranch*net) { struct ivl_branch_s*obj = net->target_obj(); ivl_assert(*net, net->pin_count() == 2); assert(net->pin(0).nexus()->t_cookie()); obj->pins[0] = net->pin(0).nexus()->t_cookie(); nexus_bra_add(obj->pins[0], obj, 0); assert(net->pin(1).nexus()->t_cookie()); obj->pins[1] = net->pin(1).nexus()->t_cookie(); nexus_bra_add(obj->pins[1], obj, 1); obj->island = net->get_island(); return true; } /* * Add a bufz object to the scope that contains it. * * Note that in the ivl_target API a BUFZ device is a special kind of * ivl_net_logic_t device, so create an ivl_net_logic_t cookie to * handle it. */ bool dll_target::bufz(const NetBUFZ*net) { struct ivl_net_logic_s *obj = new struct ivl_net_logic_s; assert(net->pin_count() == 2); obj->type_ = net->transparent()? IVL_LO_BUFT : IVL_LO_BUFZ; obj->width_= net->width(); obj->is_cassign = 0; obj->npins_= 2; obj->pins_ = new ivl_nexus_t[2]; FILE_NAME(obj, net); /* Get the ivl_nexus_t objects connected to the two pins. (We know a priori that the ivl_nexus_t objects have been allocated, because the signals have been scanned before me. This saves me the trouble of allocating them.) */ assert(net->pin(0).nexus()->t_cookie()); obj->pins_[0] = net->pin(0).nexus()->t_cookie(); ivl_nexus_ptr_t out_ptr = nexus_log_add(obj->pins_[0], obj, 0); out_ptr->drive0 = net->pin(0).drive0(); out_ptr->drive1 = net->pin(0).drive1(); assert(net->pin(1).nexus()->t_cookie()); obj->pins_[1] = net->pin(1).nexus()->t_cookie(); nexus_log_add(obj->pins_[1], obj, 1); /* Attach the logic device to the scope that contains it. */ assert(net->scope()); ivl_scope_t scop = find_scope(des_, net->scope()); assert(scop); obj->scope_ = scop; obj->name_ = net->name(); logic_attributes(obj, net); make_logic_delays_(obj, net); scope_add_logic(scop, obj); return true; } bool dll_target::class_type(const NetScope*in_scope, netclass_t*net) { ivl_scope_t use_scope = find_scope(des_, in_scope); use_scope->classes.push_back(net); return true; } bool dll_target::enumeration(const NetScope*in_scope, netenum_t*net) { ivl_scope_t use_scope = find_scope(des_, in_scope); use_scope->enumerations_.push_back(net); return true; } void dll_target::event(const NetEvent*net) { struct ivl_event_s *obj = new struct ivl_event_s; FILE_NAME(obj, net); ivl_scope_t scop = find_scope(des_, net->scope()); obj->name = net->name(); obj->scope = scop; scope_add_event(scop, obj); obj->nany = 0; obj->nneg = 0; obj->npos = 0; if (net->nprobe() >= 1) { for (unsigned idx = 0 ; idx < net->nprobe() ; idx += 1) { const NetEvProbe*pr = net->probe(idx); switch (pr->edge()) { case NetEvProbe::ANYEDGE: obj->nany += pr->pin_count(); break; case NetEvProbe::NEGEDGE: obj->nneg += pr->pin_count(); break; case NetEvProbe::POSEDGE: obj->npos += pr->pin_count(); break; } } unsigned npins = obj->nany + obj->nneg + obj->npos; obj->pins = (ivl_nexus_t*)calloc(npins, sizeof(ivl_nexus_t)); } else { obj->pins = 0; } } void dll_target::logic(const NetLogic*net) { struct ivl_net_logic_s *obj = new struct ivl_net_logic_s; obj->width_ = net->width(); FILE_NAME(obj, net); switch (net->type()) { case NetLogic::AND: obj->type_ = IVL_LO_AND; break; case NetLogic::BUF: obj->type_ = IVL_LO_BUF; break; case NetLogic::BUFIF0: obj->type_ = IVL_LO_BUFIF0; break; case NetLogic::BUFIF1: obj->type_ = IVL_LO_BUFIF1; break; case NetLogic::CMOS: obj->type_ = IVL_LO_CMOS; break; case NetLogic::NAND: obj->type_ = IVL_LO_NAND; break; case NetLogic::NMOS: obj->type_ = IVL_LO_NMOS; break; case NetLogic::NOR: obj->type_ = IVL_LO_NOR; break; case NetLogic::NOT: obj->type_ = IVL_LO_NOT; break; case NetLogic::NOTIF0: obj->type_ = IVL_LO_NOTIF0; break; case NetLogic::NOTIF1: obj->type_ = IVL_LO_NOTIF1; break; case NetLogic::OR: obj->type_ = IVL_LO_OR; break; case NetLogic::PULLDOWN: obj->type_ = IVL_LO_PULLDOWN; break; case NetLogic::PULLUP: obj->type_ = IVL_LO_PULLUP; break; case NetLogic::RCMOS: obj->type_ = IVL_LO_RCMOS; break; case NetLogic::RNMOS: obj->type_ = IVL_LO_RNMOS; break; case NetLogic::RPMOS: obj->type_ = IVL_LO_RPMOS; break; case NetLogic::PMOS: obj->type_ = IVL_LO_PMOS; break; case NetLogic::XNOR: obj->type_ = IVL_LO_XNOR; break; case NetLogic::XOR: obj->type_ = IVL_LO_XOR; break; default: assert(0); obj->type_ = IVL_LO_NONE; break; } /* Some of the logical gates are used to represent operators in a * continuous assignment, so set a flag if that is the case. */ obj->is_cassign = net->is_cassign(); /* Connect all the ivl_nexus_t objects to the pins of the device. */ obj->npins_ = net->pin_count(); obj->pins_ = new ivl_nexus_t[obj->npins_]; for (unsigned idx = 0 ; idx < obj->npins_ ; idx += 1) { const Nexus*nex = net->pin(idx).nexus(); assert(nex->t_cookie()); obj->pins_[idx] = nex->t_cookie(); ivl_nexus_ptr_t tmp = nexus_log_add(obj->pins_[idx], obj, idx); if (idx == 0) { tmp->drive0 = net->pin(0).drive0(); tmp->drive1 = net->pin(0).drive1(); } } assert(net->scope()); ivl_scope_t scop = find_scope(des_, net->scope()); assert(scop); obj->scope_= scop; obj->name_ = net->name(); logic_attributes(obj, net); make_logic_delays_(obj, net); scope_add_logic(scop, obj); } bool dll_target::tran(const NetTran*net) { struct ivl_switch_s*obj = new struct ivl_switch_s; obj->type = net->type(); obj->width = net->vector_width(); obj->part = 0; obj->offset = 0; obj->name = net->name(); obj->scope = find_scope(des_, net->scope()); obj->island = net->get_island(); assert(obj->scope); assert(obj->island); FILE_NAME(obj, net); const Nexus*nex; nex = net->pin(0).nexus(); assert(nex->t_cookie()); obj->pins[0] = nex->t_cookie(); nex = net->pin(1).nexus(); assert(nex->t_cookie()); obj->pins[1] = nex->t_cookie(); nexus_switch_add(obj->pins[0], obj, 0); nexus_switch_add(obj->pins[1], obj, 1); if (net->pin_count() > 2) { nex = net->pin(2).nexus(); assert(nex->t_cookie()); obj->pins[2] = nex->t_cookie(); nexus_switch_add(obj->pins[2], obj, 2); } else { obj->pins[2] = 0; } if (obj->type == IVL_SW_TRAN_VP) { obj->part = net->part_width(); obj->offset= net->part_offset(); } switch_attributes(obj, net); make_switch_delays_(obj, net); scope_add_switch(obj->scope, obj); return true; } bool dll_target::substitute(const NetSubstitute*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_SUBSTITUTE; obj->name = net->name(); assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); FILE_NAME(obj, net); obj->width = net->width(); obj->u_.substitute.base = net->base(); obj->u_.substitute.q = net->pin(0).nexus()->t_cookie(); obj->u_.substitute.a = net->pin(1).nexus()->t_cookie(); obj->u_.substitute.s = net->pin(2).nexus()->t_cookie(); nexus_lpm_add(obj->u_.substitute.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); nexus_lpm_add(obj->u_.substitute.a, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); nexus_lpm_add(obj->u_.substitute.s, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); return true; } bool dll_target::sign_extend(const NetSignExtend*net) { struct ivl_lpm_s*obj = new struct ivl_lpm_s; obj->type = IVL_LPM_SIGN_EXT; obj->width = net->width(); obj->name = net->name(); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); FILE_NAME(obj, net); const Nexus*nex; nex = net->pin(0).nexus(); assert(nex->t_cookie()); obj->u_.reduce.q = nex->t_cookie(); nexus_lpm_add(obj->u_.reduce.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); nex = net->pin(1).nexus(); assert(nex->t_cookie()); obj->u_.reduce.a = nex->t_cookie(); nexus_lpm_add(obj->u_.reduce.a, obj, 1, IVL_DR_HiZ, IVL_DR_HiZ); make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); return true; } bool dll_target::ureduce(const NetUReduce*net) { struct ivl_lpm_s*obj = new struct ivl_lpm_s; switch (net->type()) { case NetUReduce::NONE: assert(0); delete obj; return false; case NetUReduce::AND: obj->type = IVL_LPM_RE_AND; break; case NetUReduce::OR: obj->type = IVL_LPM_RE_OR; break; case NetUReduce::XOR: obj->type = IVL_LPM_RE_XOR; break; case NetUReduce::NAND: obj->type = IVL_LPM_RE_NAND; break; case NetUReduce::NOR: obj->type = IVL_LPM_RE_NOR; break; case NetUReduce::XNOR: obj->type = IVL_LPM_RE_XNOR; break; } obj->name = net->name(); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); FILE_NAME(obj, net); obj->width = net->width(); const Nexus*nex; nex = net->pin(0).nexus(); assert(nex->t_cookie()); obj->u_.reduce.q = nex->t_cookie(); nexus_lpm_add(obj->u_.reduce.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); nex = net->pin(1).nexus(); assert(nex->t_cookie()); obj->u_.reduce.a = nex->t_cookie(); nexus_lpm_add(obj->u_.reduce.a, obj, 1, IVL_DR_HiZ, IVL_DR_HiZ); make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); return true; } void dll_target::net_case_cmp(const NetCaseCmp*net) { struct ivl_lpm_s*obj = new struct ivl_lpm_s; switch (net->kind()) { case NetCaseCmp::EEQ: obj->type = IVL_LPM_CMP_EEQ; break; case NetCaseCmp::NEQ: obj->type = IVL_LPM_CMP_NEE; break; case NetCaseCmp::XEQ: obj->type = IVL_LPM_CMP_EQX; break; case NetCaseCmp::ZEQ: obj->type = IVL_LPM_CMP_EQZ; break; } obj->name = net->name(); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); FILE_NAME(obj, net); obj->width = net->width(); obj->u_.arith.signed_flag = 0; const Nexus*nex; nex = net->pin(1).nexus(); assert(nex->t_cookie()); obj->u_.arith.a = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.a, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); nex = net->pin(2).nexus(); assert(nex->t_cookie()); obj->u_.arith.b = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.b, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); nex = net->pin(0).nexus(); assert(nex->t_cookie()); obj->u_.arith.q = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); } ivl_event_t dll_target::make_lpm_trigger(const NetEvWait*net) { ivl_event_t trigger = 0; if (net) { const NetEvent*ev = net->event(0); /* Locate the event by name. */ ivl_scope_t ev_scope = lookup_scope_(ev->scope()); assert(ev_scope); assert(ev_scope->nevent_ > 0); for (unsigned idx = 0; idx < ev_scope->nevent_; idx += 1) { const char*ename = ivl_event_basename(ev_scope->event_[idx]); if (strcmp(ev->name(), ename) == 0) { trigger = ev_scope->event_[idx]; break; } } /* Connect up the probe pins. This wasn't done during the ::event method because the signals weren't scanned yet. */ assert(ev->nprobe() == 1); const NetEvProbe*pr = ev->probe(0); for (unsigned bit = 0; bit < pr->pin_count(); bit += 1) { ivl_nexus_t nex = (ivl_nexus_t) pr->pin(bit).nexus()->t_cookie(); assert(nex); trigger->pins[bit] = nex; } } return trigger; } bool dll_target::net_sysfunction(const NetSysFunc*net) { unsigned idx; const Nexus*nex; struct ivl_lpm_s*obj = new struct ivl_lpm_s; obj->type = IVL_LPM_SFUNC; obj->name = net->name(); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); FILE_NAME(obj, net); obj->u_.sfunc.ports = net->pin_count(); assert(net->pin_count() >= 1); obj->width = net->vector_width(); obj->u_.sfunc.fun_name = net->func_name(); obj->u_.sfunc.pins = new ivl_nexus_t[net->pin_count()]; nex = net->pin(0).nexus(); assert(nex->t_cookie()); obj->u_.sfunc.pins[0] = nex->t_cookie(); nexus_lpm_add(obj->u_.sfunc.pins[0], obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); for (idx = 1 ; idx < net->pin_count() ; idx += 1) { nex = net->pin(idx).nexus(); assert(nex->t_cookie()); obj->u_.sfunc.pins[idx] = nex->t_cookie(); nexus_lpm_add(obj->u_.sfunc.pins[idx], obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } /* Save information about the trigger event if it exists. */ obj->u_.sfunc.trigger = make_lpm_trigger(net->trigger()); make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); return true; } /* * An IVL_LPM_UFUNC represents a node in a combinational expression * that calls a user defined function. I create an LPM object that has * the right connections, and refers to the ivl_scope_t of the * definition. */ bool dll_target::net_function(const NetUserFunc*net) { struct ivl_lpm_s*obj = new struct ivl_lpm_s; obj->type = IVL_LPM_UFUNC; obj->name = net->name(); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); FILE_NAME(obj, net); /* Get the definition of the function and save it. */ const NetScope*def = net->def(); assert(def); obj->u_.ufunc.def = lookup_scope_(def); /* Save information about the ports in the ivl_lpm_s structure. Note that port 0 is the return value. */ obj->u_.ufunc.ports = net->pin_count(); assert(net->pin_count() >= 1); obj->width = net->port_width(0); /* Now collect all the pins and connect them to the nexa of the net. The output pins have strong drive, and the remaining input pins are HiZ. */ obj->u_.ufunc.pins = new ivl_nexus_t[net->pin_count()]; for (unsigned idx = 0 ; idx < net->pin_count() ; idx += 1) { const Nexus*nex = net->pin(idx).nexus(); assert(nex->t_cookie()); ivl_nexus_t nn = nex->t_cookie(); assert(nn); obj->u_.ufunc.pins[idx] = nn; ivl_drive_t drive = idx == 0 ? IVL_DR_STRONG : IVL_DR_HiZ; nexus_lpm_add(obj->u_.ufunc.pins[idx], obj, idx, drive, drive); } /* Save information about the trigger event if it exists. */ obj->u_.ufunc.trigger = make_lpm_trigger(net->trigger()); make_lpm_delays_(obj, net); /* All done. Add this LPM to the scope. */ scope_add_lpm(obj->scope, obj); return true; } void dll_target::udp(const NetUDP*net) { struct ivl_net_logic_s *obj = new struct ivl_net_logic_s; obj->type_ = IVL_LO_UDP; FILE_NAME(obj, net); /* The NetUDP class hasn't learned about width yet, so we assume a width of 1. */ obj->width_ = 1; obj->is_cassign = 0; static map udps; ivl_udp_t u; if (udps.find(net->udp_name()) != udps.end()) { u = udps[net->udp_name()]; } else { u = new struct ivl_udp_s; u->nrows = net->rows(); u->table = (ivl_udp_s::ccharp_t*)malloc((u->nrows+1)*sizeof(char*)); u->table[u->nrows] = 0x0; u->nin = net->nin(); u->sequ = net->is_sequential(); u->file = net->udp_file(); u->lineno = net->udp_lineno(); if (u->sequ) u->init = net->get_initial(); else u->init = 'x'; u->name = net->udp_name(); string inp; char out; unsigned int i = 0; if (net->first(inp, out)) do { string tt = inp+out; u->table[i++] = strings_.add(tt.c_str()); } while (net->next(inp, out)); assert(i==u->nrows); assert((u->nin + 1) == net->port_count()); u->ports = new string [u->nin + 1]; for(unsigned idx = 0; idx <= u->nin; idx += 1) { u->ports[idx] = net->port_name(idx); } udps[net->udp_name()] = u; } obj->udp = u; // Some duplication of code here, see: dll_target::logic() /* Connect all the ivl_nexus_t objects to the pins of the device. */ obj->npins_ = net->pin_count(); obj->pins_ = new ivl_nexus_t[obj->npins_]; for (unsigned idx = 0 ; idx < obj->npins_ ; idx += 1) { /* Skip unconnected input pins. These will take on HiZ values by the code generators. */ if (! net->pin(idx).is_linked()) { obj->pins_[idx] = 0; continue; } const Nexus*nex = net->pin(idx).nexus(); ivl_assert(*net, nex && nex->t_cookie()); obj->pins_[idx] = nex->t_cookie(); nexus_log_add(obj->pins_[idx], obj, idx); } assert(net->scope()); ivl_scope_t scop = find_scope(des_, net->scope()); assert(scop); obj->scope_= scop; obj->name_ = net->name(); FILE_NAME(obj, net); make_logic_delays_(obj, net); obj->nattr = 0; obj->attr = 0; scope_add_logic(scop, obj); } void dll_target::lpm_abs(const NetAbs*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_ABS; obj->name = net->name(); // NetAddSub names are permallocated. assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); FILE_NAME(obj, net); obj->u_.arith.signed_flag = 0; obj->width = net->width(); const Nexus*nex; /* the output is pin(0) */ nex = net->pin(0).nexus(); assert(nex->t_cookie()); obj->u_.arith.q = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); nex = net->pin(1).nexus(); assert(nex->t_cookie()); /* pin(1) is the input data. */ obj->u_.arith.a = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.a, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); } void dll_target::lpm_add_sub(const NetAddSub*net) { ivl_lpm_t obj = new struct ivl_lpm_s; if (net->attribute(perm_string::literal("LPM_Direction")) == verinum("SUB")) obj->type = IVL_LPM_SUB; else obj->type = IVL_LPM_ADD; obj->name = net->name(); // NetAddSub names are permallocated. assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); FILE_NAME(obj, net); obj->u_.arith.signed_flag = 0; /* Choose the width of the adder. If the carry bit is connected, then widen the adder by one and plan on leaving the fake inputs unconnected. */ obj->width = net->width(); if (net->pin_Cout().is_linked()) { obj->width += 1; } const Nexus*nex; nex = net->pin_Result().nexus(); assert(nex->t_cookie()); obj->u_.arith.q = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); nex = net->pin_DataA().nexus(); assert(nex->t_cookie()); obj->u_.arith.a = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.a, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); nex = net->pin_DataB().nexus(); assert(nex->t_cookie()); obj->u_.arith.b = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.b, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); /* If the carry output is connected, then connect the extra Q pin to the carry nexus and zero the a and b inputs. */ if (net->pin_Cout().is_linked()) { cerr << "XXXX: t-dll.cc: Forgot how to connect cout." << endl; } make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); } bool dll_target::lpm_array_dq(const NetArrayDq*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_ARRAY; obj->name = net->name(); obj->u_.array.sig = find_signal(des_, net->mem()); assert(obj->u_.array.sig); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); FILE_NAME(obj, net); obj->width = net->width(); obj->u_.array.swid = net->awidth(); make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); const Nexus*nex; nex = net->pin_Address().nexus(); assert(nex->t_cookie()); obj->u_.array.a = nex->t_cookie(); nexus_lpm_add(obj->u_.array.a, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); nex = net->pin_Result().nexus(); assert(nex->t_cookie()); obj->u_.array.q = nex->t_cookie(); nexus_lpm_add(obj->u_.array.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); return true; } /* * The lpm_clshift device represents both left and right shifts, * depending on what is connected to the Direction pin. We convert * this device into SHIFTL or SHIFTR devices. */ void dll_target::lpm_clshift(const NetCLShift*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_SHIFTL; obj->name = net->name(); assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); FILE_NAME(obj, net); /* Look at the direction input of the device, and select the shift direction accordingly. */ if (net->right_flag()) obj->type = IVL_LPM_SHIFTR; if (net->signed_flag()) obj->u_.shift.signed_flag = 1; else obj->u_.shift.signed_flag = 0; obj->width = net->width(); obj->u_.shift.select = net->width_dist(); const Nexus*nex; nex = net->pin_Result().nexus(); assert(nex->t_cookie()); obj->u_.shift.q = nex->t_cookie(); nexus_lpm_add(obj->u_.shift.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); nex = net->pin_Data().nexus(); assert(nex->t_cookie()); obj->u_.shift.d = nex->t_cookie(); nexus_lpm_add(obj->u_.shift.d, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); nex = net->pin_Distance().nexus(); assert(nex->t_cookie()); obj->u_.shift.s = nex->t_cookie(); nexus_lpm_add(obj->u_.shift.s, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); } bool dll_target::lpm_arith1_(ivl_lpm_type_t lpm_type, unsigned width, bool signed_flag, const NetNode*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = lpm_type; obj->name = net->name(); // NetCastInt2 names are permallocated assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); FILE_NAME(obj, net); obj->width = width; obj->u_.arith.signed_flag = signed_flag? 1 : 0; const Nexus*nex; nex = net->pin(0).nexus(); assert(nex->t_cookie()); obj->u_.arith.q = nex->t_cookie(); nex = net->pin(1).nexus(); assert(nex->t_cookie()); obj->u_.arith.a = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); nexus_lpm_add(obj->u_.arith.a, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); return true; } bool dll_target::lpm_cast_int2(const NetCastInt2*net) { return lpm_arith1_(IVL_LPM_CAST_INT2, net->width(), true, net); } bool dll_target::lpm_cast_int4(const NetCastInt4*net) { return lpm_arith1_(IVL_LPM_CAST_INT, net->width(), true, net); } bool dll_target::lpm_cast_real(const NetCastReal*net) { return lpm_arith1_(IVL_LPM_CAST_REAL, 0, net->signed_flag(), net); } /* * Make out of the NetCompare object an ivl_lpm_s object. The * comparators in ivl_target do not support < or <=, but they can be * trivially converted to > and >= by swapping the operands. */ void dll_target::lpm_compare(const NetCompare*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->name = net->name(); // NetCompare names are permallocated assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); FILE_NAME(obj, net); bool swap_operands = false; obj->width = net->width(); obj->u_.arith.signed_flag = net->get_signed()? 1 : 0; const Nexus*nex; nex = net->pin_DataA().nexus(); assert(nex->t_cookie()); obj->u_.arith.a = nex->t_cookie(); nex = net->pin_DataB().nexus(); assert(nex->t_cookie()); obj->u_.arith.b = nex->t_cookie(); if (net->pin_AGEB().is_linked()) { nex = net->pin_AGEB().nexus(); obj->type = IVL_LPM_CMP_GE; assert(nex->t_cookie()); obj->u_.arith.q = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); } else if (net->pin_AGB().is_linked()) { nex = net->pin_AGB().nexus(); obj->type = IVL_LPM_CMP_GT; assert(nex->t_cookie()); obj->u_.arith.q = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); } else if (net->pin_ALEB().is_linked()) { nex = net->pin_ALEB().nexus(); obj->type = IVL_LPM_CMP_GE; assert(nex->t_cookie()); obj->u_.arith.q = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); swap_operands = true; } else if (net->pin_ALB().is_linked()) { nex = net->pin_ALB().nexus(); obj->type = IVL_LPM_CMP_GT; assert(nex->t_cookie()); obj->u_.arith.q = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); swap_operands = true; } else if (net->pin_AEB().is_linked()) { nex = net->pin_AEB().nexus(); obj->type = IVL_LPM_CMP_EQ; assert(nex->t_cookie()); obj->u_.arith.q = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); } else if (net->pin_ANEB().is_linked()) { nex = net->pin_ANEB().nexus(); obj->type = IVL_LPM_CMP_NE; assert(nex->t_cookie()); obj->u_.arith.q = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); } else { assert(0); } if (swap_operands) { ivl_nexus_t tmp = obj->u_.arith.a; obj->u_.arith.a = obj->u_.arith.b; obj->u_.arith.b = tmp; } nexus_lpm_add(obj->u_.arith.a, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); nexus_lpm_add(obj->u_.arith.b, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); } void dll_target::lpm_divide(const NetDivide*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_DIVIDE; obj->name = net->name(); assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); FILE_NAME(obj, net); unsigned wid = net->width_r(); obj->width = wid; obj->u_.arith.signed_flag = net->get_signed()? 1 : 0; const Nexus*nex; nex = net->pin_Result().nexus(); assert(nex->t_cookie()); obj->u_.arith.q = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); nex = net->pin_DataA().nexus(); assert(nex->t_cookie()); obj->u_.arith.a = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.a, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); nex = net->pin_DataB().nexus(); assert(nex->t_cookie()); obj->u_.arith.b = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.b, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); } void dll_target::lpm_modulo(const NetModulo*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_MOD; obj->name = net->name(); assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); FILE_NAME(obj, net); unsigned wid = net->width_r(); obj->width = wid; obj->u_.arith.signed_flag = net->get_signed()? 1 : 0; const Nexus*nex; nex = net->pin_Result().nexus(); assert(nex->t_cookie()); obj->u_.arith.q = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); nex = net->pin_DataA().nexus(); assert(nex->t_cookie()); obj->u_.arith.a = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.a, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); nex = net->pin_DataB().nexus(); assert(nex->t_cookie()); obj->u_.arith.b = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.b, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); } void dll_target::lpm_ff(const NetFF*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_FF; obj->name = net->name(); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); FILE_NAME(obj, net); obj->width = net->width(); scope_add_lpm(obj->scope, obj); const Nexus*nex; /* Set the clock polarity. */ obj->u_.ff.negedge_flag = net->is_negedge(); /* Set the clk signal to point to the nexus, and the nexus to point back to this device. */ nex = net->pin_Clock().nexus(); assert(nex->t_cookie()); obj->u_.ff.clk = nex->t_cookie(); assert(obj->u_.ff.clk); nexus_lpm_add(obj->u_.ff.clk, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); /* If there is a clock enable, then connect it up to the FF device. */ if (net->pin_Enable().is_linked()) { nex = net->pin_Enable().nexus(); assert(nex->t_cookie()); obj->u_.ff.we = nex->t_cookie(); assert(obj->u_.ff.we); nexus_lpm_add(obj->u_.ff.we, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } else { obj->u_.ff.we = 0; } if (net->pin_Aclr().is_linked()) { nex = net->pin_Aclr().nexus(); assert(nex->t_cookie()); obj->u_.ff.aclr = nex->t_cookie(); assert(obj->u_.ff.aclr); nexus_lpm_add(obj->u_.ff.aclr, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } else { obj->u_.ff.aclr = 0; } if (net->pin_Aset().is_linked()) { nex = net->pin_Aset().nexus(); assert(nex->t_cookie()); obj->u_.ff.aset = nex->t_cookie(); assert(obj->u_.ff.aset); nexus_lpm_add(obj->u_.ff.aset, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); verinum tmp = net->aset_value(); if (tmp.len() > 0) obj->u_.ff.aset_value = expr_from_value_(tmp); else obj->u_.ff.aset_value = 0; } else { obj->u_.ff.aset = 0; obj->u_.ff.aset_value = 0; } if (net->pin_Sclr().is_linked()) { nex = net->pin_Sclr().nexus(); assert(nex->t_cookie()); obj->u_.ff.sclr = nex->t_cookie(); assert(obj->u_.ff.sclr); nexus_lpm_add(obj->u_.ff.sclr, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } else { obj->u_.ff.sclr = 0; } if (net->pin_Sset().is_linked()) { nex = net->pin_Sset().nexus(); assert(nex->t_cookie()); obj->u_.ff.sset = nex->t_cookie(); assert(obj->u_.ff.sset); nexus_lpm_add(obj->u_.ff.sset, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); verinum tmp = net->sset_value(); if (tmp.len() > 0) obj->u_.ff.sset_value = expr_from_value_(tmp); else obj->u_.ff.sset_value = 0; } else { obj->u_.ff.sset = 0; obj->u_.ff.sset_value = 0; } nex = net->pin_Q().nexus(); assert(nex->t_cookie()); obj->u_.ff.q.pin = nex->t_cookie(); nexus_lpm_add(obj->u_.ff.q.pin, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); nex = net->pin_Data().nexus(); assert(nex->t_cookie()); obj->u_.ff.d.pin = nex->t_cookie(); nexus_lpm_add(obj->u_.ff.d.pin, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } /* * Make the NetMult object into an IVL_LPM_MULT node. */ void dll_target::lpm_mult(const NetMult*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_MULT; obj->name = net->name(); assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); FILE_NAME(obj, net); unsigned wid = net->width_r(); obj->width = wid; obj->u_.arith.signed_flag = 0; const Nexus*nex; nex = net->pin_Result().nexus(); assert(nex->t_cookie()); obj->u_.arith.q = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); nex = net->pin_DataA().nexus(); assert(nex->t_cookie()); obj->u_.arith.a = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.a, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); nex = net->pin_DataB().nexus(); assert(nex->t_cookie()); obj->u_.arith.b = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.b, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); } /* * Hook up the mux devices so that the select expression selects the * correct sub-expression with the ivl_lpm_data2 function. */ void dll_target::lpm_mux(const NetMux*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_MUX; obj->name = net->name(); // The NetMux permallocates its name. obj->scope = find_scope(des_, net->scope()); assert(obj->scope); FILE_NAME(obj, net); obj->width = net->width(); obj->u_.mux.size = net->size(); obj->u_.mux.swid = net->sel_width(); make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); const Nexus*nex; /* Connect the output bits. */ nex = net->pin_Result().nexus(); assert(nex->t_cookie()); obj->u_.mux.q = nex->t_cookie(); nexus_lpm_add(obj->u_.mux.q, obj, 0, net->pin_Result().drive0(), net->pin_Result().drive1()); /* Connect the select bits. */ nex = net->pin_Sel().nexus(); assert(nex->t_cookie()); obj->u_.mux.s = nex->t_cookie(); nexus_lpm_add(obj->u_.mux.s, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); unsigned selects = obj->u_.mux.size; obj->u_.mux.d = new ivl_nexus_t [selects]; for (unsigned sdx = 0 ; sdx < selects ; sdx += 1) { nex = net->pin_Data(sdx).nexus(); ivl_nexus_t tmp = nex->t_cookie(); obj->u_.mux.d[sdx] = tmp; if (tmp == 0) { cerr << net->get_fileline() << ": internal error: " << "dll_target::lpm_mux: " << "Missing data port " << sdx << " of mux " << obj->name << "." << endl; } ivl_assert(*net, tmp); nexus_lpm_add(tmp, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } } /* * Make the NetPow object into an IVL_LPM_POW node. */ void dll_target::lpm_pow(const NetPow*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_POW; FILE_NAME(obj, net); obj->name = net->name(); assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); FILE_NAME(obj, net); unsigned wid = net->width_r(); obj->u_.arith.signed_flag = net->get_signed()? 1 : 0; obj->width = wid; const Nexus*nex; nex = net->pin_Result().nexus(); assert(nex->t_cookie()); obj->u_.arith.q = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); nex = net->pin_DataA().nexus(); assert(nex->t_cookie()); obj->u_.arith.a = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.a, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); nex = net->pin_DataB().nexus(); assert(nex->t_cookie()); obj->u_.arith.b = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.b, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); } bool dll_target::concat(const NetConcat*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = net->transparent()? IVL_LPM_CONCATZ : IVL_LPM_CONCAT; obj->name = net->name(); // NetConcat names are permallocated assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); FILE_NAME(obj, net); obj->width = net->width(); obj->u_.concat.inputs = net->pin_count() - 1; obj->u_.concat.pins = new ivl_nexus_t[obj->u_.concat.inputs+1]; for (unsigned idx = 0 ; idx < obj->u_.concat.inputs+1 ; idx += 1) { ivl_drive_t dr = idx == 0? IVL_DR_STRONG : IVL_DR_HiZ; const Nexus*nex = net->pin(idx).nexus(); assert(nex->t_cookie()); obj->u_.concat.pins[idx] = nex->t_cookie(); nexus_lpm_add(obj->u_.concat.pins[idx], obj, 0, dr, dr); } make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); return true; } bool dll_target::part_select(const NetPartSelect*net) { ivl_lpm_t obj = new struct ivl_lpm_s; switch (net->dir()) { case NetPartSelect::VP: obj->type = IVL_LPM_PART_VP; break; case NetPartSelect::PV: obj->type = IVL_LPM_PART_PV; break; } obj->name = net->name(); // NetPartSelect names are permallocated. assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); FILE_NAME(obj, net); /* Part selects are always unsigned, so we use this to indicate * if the part select base signal is signed or not. */ if (net->signed_flag()) obj->u_.part.signed_flag = 1; else obj->u_.part.signed_flag = 0; /* Choose the width of the part select. */ obj->width = net->width(); obj->u_.part.base = net->base(); obj->u_.part.s = 0; const Nexus*nex; switch (obj->type) { case IVL_LPM_PART_VP: /* NetPartSelect:pin(0) is the output pin. */ nex = net->pin(0).nexus(); assert(nex->t_cookie()); obj->u_.part.q = nex->t_cookie(); /* NetPartSelect:pin(1) is the input pin. */ nex = net->pin(1).nexus(); assert(nex->t_cookie()); obj->u_.part.a = nex->t_cookie(); /* If the part select has an additional pin, that pin is a variable select base. */ if (net->pin_count() >= 3) { nex = net->pin(2).nexus(); assert(nex->t_cookie()); obj->u_.part.s = nex->t_cookie(); } break; case IVL_LPM_PART_PV: /* NetPartSelect:pin(1) is the output pin. */ nex = net->pin(1).nexus(); assert(nex->t_cookie()); obj->u_.part.q = nex->t_cookie(); /* NetPartSelect:pin(0) is the input pin. */ nex = net->pin(0).nexus(); assert(nex->t_cookie()); obj->u_.part.a = nex->t_cookie(); break; default: assert(0); } nexus_lpm_add(obj->u_.part.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); nexus_lpm_add(obj->u_.part.a, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); /* The select input is optional. */ if (obj->u_.part.s) nexus_lpm_add(obj->u_.part.s, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); return true; } bool dll_target::replicate(const NetReplicate*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_REPEAT; obj->name = net->name(); assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); FILE_NAME(obj, net); obj->width = net->width(); obj->u_.repeat.count = net->repeat(); ivl_drive_t dr = IVL_DR_STRONG; const Nexus*nex = net->pin(0).nexus(); assert(nex->t_cookie()); obj->u_.repeat.q = nex->t_cookie(); nexus_lpm_add(obj->u_.repeat.q, obj, 0, dr, dr); dr = IVL_DR_HiZ; nex = net->pin(1).nexus(); assert(nex->t_cookie()); obj->u_.repeat.a = nex->t_cookie(); nexus_lpm_add(obj->u_.repeat.a, obj, 0, dr, dr); make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); return true; } /* * The assignment l-values are captured by the assignment statements * themselves in the process handling. */ void dll_target::net_assign(const NetAssign_*) const { } bool dll_target::net_const(const NetConst*net) { unsigned idx; char*bits; static char*bits_tmp = 0; static unsigned bits_cnt = 0; struct ivl_net_const_s *obj = new struct ivl_net_const_s; if (net->is_string()) { obj->type = IVL_VT_STRING; assert((net->width() % 8) == 0); } else obj->type = IVL_VT_BOOL; assert(net->scope()); obj->scope = find_scope(des_, net->scope()); FILE_NAME(obj, net); /* constants have a single vector output. */ assert(net->pin_count() == 1); obj->width_ = net->width(); obj->signed_ = net->value().has_sign(); if (obj->width_ <= sizeof(obj->b.bit_)) { bits = obj->b.bit_; } else { if (obj->width_ >= bits_cnt) { bits_tmp = (char*)realloc(bits_tmp, obj->width_+1); bits_cnt = obj->width_+1; } bits = bits_tmp; } for (idx = 0 ; idx < obj->width_ ; idx += 1) switch (net->value(idx)) { case verinum::V0: bits[idx] = '0'; break; case verinum::V1: bits[idx] = '1'; break; case verinum::Vx: if (obj->type == IVL_VT_BOOL) obj->type = IVL_VT_LOGIC; bits[idx] = 'x'; assert(! net->is_string()); break; case verinum::Vz: if (obj->type == IVL_VT_BOOL) obj->type = IVL_VT_LOGIC; bits[idx] = 'z'; assert(! net->is_string()); break; } if (obj->width_ > sizeof(obj->b.bit_)) { bits[obj->width_] = 0; obj->b.bits_ = net_const_strings.make(bits); } /* Connect to all the nexus objects. Note that the one-bit case can be handled more efficiently without allocating array space. */ ivl_drive_t drv0, drv1; drive_from_link(net->pin(0), drv0, drv1); const Nexus*nex = net->pin(0).nexus(); assert(nex->t_cookie()); obj->pin_ = nex->t_cookie(); nexus_con_add(obj->pin_, obj, 0, drv0, drv1); des_.consts.push_back(obj); make_const_delays_(obj, net); return true; } bool dll_target::net_literal(const NetLiteral*net) { struct ivl_net_const_s *obj = new struct ivl_net_const_s; obj->type = IVL_VT_REAL; assert(net->scope()); obj->scope = find_scope(des_, net->scope()); FILE_NAME(obj, net); obj->width_ = 1; obj->signed_ = 1; obj->b.real_value = net->value_real().as_double(); /* Connect to all the nexus objects. Note that the one-bit case can be handled more efficiently without allocating array space. */ ivl_drive_t drv0, drv1; drive_from_link(net->pin(0), drv0, drv1); const Nexus*nex = net->pin(0).nexus(); assert(nex->t_cookie()); obj->pin_ = nex->t_cookie(); nexus_con_add(obj->pin_, obj, 0, drv0, drv1); des_.consts.push_back(obj); make_const_delays_(obj, net); return true; } void dll_target::net_probe(const NetEvProbe*) { } void dll_target::scope(const NetScope*net) { if (net->parent()==0 && net->type()==NetScope::CLASS) { if (debug_emit) { cerr << "dll_target::scope: " << "Add class " << scope_path(net) << " as a root scope." << endl; } add_root(net); } if (net->parent() == 0) { // Root scopes are already created... } else { perm_string sname = make_scope_name(net->fullname()); ivl_scope_t scop = new struct ivl_scope_s; scop->name_ = sname; FILE_NAME(scop, net); scop->parent = find_scope(des_, net->parent()); assert(scop->parent); scop->parent->children[net->fullname()] = scop; scop->parent->child .push_back(scop); scop->nlog_ = 0; scop->log_ = 0; scop->nevent_ = 0; scop->event_ = 0; scop->nlpm_ = 0; scop->lpm_ = 0; scop->def = 0; make_scope_parameters(scop, net); scop->time_precision = net->time_precision(); scop->time_units = net->time_unit(); scop->nattr = net->attr_cnt(); scop->attr = fill_in_attributes(net); scop->is_auto = net->is_auto(); scop->is_cell = net->is_cell(); switch (net->type()) { case NetScope::PACKAGE: cerr << "?:?" << ": internal error: " << "Package scopes should not have parents." << endl; // fallthrough case NetScope::MODULE: scop->type_ = IVL_SCT_MODULE; scop->tname_ = net->module_name(); scop->ports = net->module_port_nets(); if (scop->ports > 0) { scop->u_.net = new NetNet*[scop->ports]; for (unsigned idx = 0; idx < scop->ports; idx += 1) { scop->u_.net[idx] = net->module_port_net(idx); } } scop->module_ports_info = net->module_port_info(); break; case NetScope::TASK: { const NetTaskDef*def = net->task_def(); if (def == 0) { cerr << "?:?" << ": internal error: " << "task " << scop->name_ << " has no definition." << endl; } assert(def); scop->type_ = IVL_SCT_TASK; scop->tname_ = def->scope()->basename(); break; } case NetScope::FUNC: scop->type_ = IVL_SCT_FUNCTION; scop->tname_ = net->func_def()->scope()->basename(); break; case NetScope::BEGIN_END: scop->type_ = IVL_SCT_BEGIN; scop->tname_ = scop->name_; break; case NetScope::FORK_JOIN: scop->type_ = IVL_SCT_FORK; scop->tname_ = scop->name_; break; case NetScope::GENBLOCK: scop->type_ = IVL_SCT_GENERATE; scop->tname_ = scop->name_; break; case NetScope::CLASS: assert(0); break; } } } void dll_target::convert_module_ports(const NetScope*net) { ivl_scope_t scop = find_scope(des_, net); if (scop->ports > 0) { NetNet**nets = scop->u_.net; scop->u_.nex = new ivl_nexus_t[scop->ports]; for (unsigned idx = 0; idx < scop->ports; idx += 1) { ivl_signal_t sig = find_signal(des_, nets[idx]); scop->u_.nex[idx] = nexus_sig_make(sig, 0); } delete [] nets; } } void dll_target::signal(const NetNet*net) { ivl_signal_t obj = new struct ivl_signal_s; obj->name_ = net->name(); /* Attach the signal to the ivl_scope_t object that contains it. This involves growing the sigs_ array in the scope object, or creating the sigs_ array if this is the first signal. */ obj->scope_ = find_scope(des_, net->scope()); assert(obj->scope_); FILE_NAME(obj, net); obj->scope_->sigs_.push_back(obj); /* Save the primitive properties of the signal in the ivl_signal_t object. */ { size_t idx = 0; vector::const_iterator cur; obj->packed_dims.resize(net->packed_dims().size()); for (cur = net->packed_dims().begin(), idx = 0 ; cur != net->packed_dims().end() ; ++cur, idx += 1) { obj->packed_dims[idx] = *cur; } } obj->net_type = net->net_type(); obj->local_ = net->local_flag()? 1 : 0; obj->forced_net_ = (net->type() != NetNet::REG) && (net->peek_lref() > 0) ? 1 : 0; obj->discipline = net->get_discipline(); obj->array_dimensions_ = net->unpacked_dimensions(); assert(obj->array_dimensions_ == net->unpacked_dimensions()); switch (net->port_type()) { case NetNet::PINPUT: obj->port_ = IVL_SIP_INPUT; break; case NetNet::POUTPUT: obj->port_ = IVL_SIP_OUTPUT; break; case NetNet::PINOUT: obj->port_ = IVL_SIP_INOUT; break; default: obj->port_ = IVL_SIP_NONE; break; } obj->module_port_index_ = net->get_module_port_index(); switch (net->type()) { case NetNet::REG: obj->type_ = IVL_SIT_REG; break; /* The SUPPLY0/1 net types are replaced with pulldown/up by elaborate. They should not make it here. */ case NetNet::SUPPLY0: assert(0); break; case NetNet::SUPPLY1: assert(0); break; /* We will convert this to a TRI after we check that there is only one driver. */ case NetNet::UNRESOLVED_WIRE: obj->type_ = IVL_SIT_UWIRE; break; case NetNet::TRI: case NetNet::WIRE: case NetNet::IMPLICIT: obj->type_ = IVL_SIT_TRI; break; case NetNet::TRI0: obj->type_ = IVL_SIT_TRI0; break; case NetNet::TRI1: obj->type_ = IVL_SIT_TRI1; break; case NetNet::TRIAND: case NetNet::WAND: obj->type_ = IVL_SIT_TRIAND; break; case NetNet::TRIOR: case NetNet::WOR: obj->type_ = IVL_SIT_TRIOR; break; default: obj->type_ = IVL_SIT_NONE; break; } /* Initialize the path fields to be filled in later. */ obj->npath = 0; obj->path = 0; obj->nattr = net->attr_cnt(); obj->attr = fill_in_attributes(net); /* Get the nexus objects for all the pins of the signal. If the signal has only one pin, then write the single ivl_nexus_t object into n.pin_. Otherwise, make an array of ivl_nexus_t cookies. When I create an ivl_nexus_t object, store it in the t_cookie of the Nexus object so that I find it again when I next encounter the nexus. */ if (obj->array_dimensions_ == 1) { const vector& dims = net->unpacked_dims(); if (dims[0].get_msb() < dims[0].get_lsb()) { obj->array_base = dims[0].get_msb(); obj->array_addr_swapped = false; } else { obj->array_base = dims[0].get_lsb(); obj->array_addr_swapped = true; } obj->array_words = net->unpacked_count(); } else { // The back-end API doesn't yet support multi-dimension // unpacked arrays, so just report the canonical dimensions. obj->array_base = 0; obj->array_words = net->unpacked_count(); obj->array_addr_swapped = 0; } ivl_assert(*net, obj->array_words == net->pin_count()); if (debug_optimizer && obj->array_words > 1000) cerr << "debug: " "t-dll creating nexus array " << obj->array_words << " long" << endl; if (obj->array_words > 1 && net->pins_are_virtual()) { obj->pins = NULL; if (debug_optimizer && obj->array_words > 1000) cerr << "debug: " "t-dll used NULL for big nexus array" << endl; return; } if (obj->array_words > 1) obj->pins = new ivl_nexus_t[obj->array_words]; for (unsigned idx = 0 ; idx < obj->array_words ; idx += 1) { const Nexus*nex = net->pins_are_virtual() ? 0 : net->pin(idx).nexus(); if (nex == 0) { // Special case: This pin is connected to // nothing. This can happen, for example, if the // variable is only used in behavioral // code. Create a stub nexus. ivl_nexus_t tmp = nexus_sig_make(obj, idx); tmp->nexus_ = nex; tmp->name_ = 0; if (obj->array_words > 1) obj->pins[idx] = tmp; else obj->pin = tmp; } else if (nex->t_cookie()) { if (obj->array_words > 1) { obj->pins[idx] = nex->t_cookie(); nexus_sig_add(obj->pins[idx], obj, idx); } else { obj->pin = nex->t_cookie(); nexus_sig_add(obj->pin, obj, idx); } } else { ivl_nexus_t tmp = nexus_sig_make(obj, idx); tmp->nexus_ = nex; tmp->name_ = 0; nex->t_cookie(tmp); if (obj->array_words > 1) obj->pins[idx] = tmp; else obj->pin = tmp; } } if (debug_optimizer && obj->array_words > 1000) cerr << "debug: t-dll done with big nexus array" << endl; } bool dll_target::signal_paths(const NetNet*net) { /* Nothing to do if there are no paths for this signal. */ if (net->delay_paths() == 0) return true; ivl_signal_t obj = find_signal(des_, net); assert(obj); /* We cannot have already set up the paths for this signal. */ assert(obj->npath == 0); assert(obj->path == 0); /* Figure out how many paths there really are. */ for (unsigned idx = 0 ; idx < net->delay_paths() ; idx += 1) { const NetDelaySrc*src = net->delay_path(idx); obj->npath += src->src_count(); } obj->path = new struct ivl_delaypath_s[obj->npath]; unsigned ptr = 0; for (unsigned idx = 0 ; idx < net->delay_paths() ; idx += 1) { const NetDelaySrc*src = net->delay_path(idx); /* If this path has a condition, then hook it up. */ ivl_nexus_t path_condit = 0; if (src->has_condit()) { const Nexus*nt = src->condit_pin().nexus(); path_condit = nt->t_cookie(); } for (unsigned pin = 0; pin < src->src_count(); pin += 1) { const Nexus*nex = src->src_pin(pin).nexus(); if (! nex->t_cookie()) { cerr << src->get_fileline() << ": internal error: " << "No signal connected to pin " << pin << " of delay path to " << net->name() << "." << endl; } assert(nex->t_cookie()); obj->path[ptr].scope = lookup_scope_(src->scope()); obj->path[ptr].src = nex->t_cookie(); obj->path[ptr].condit = path_condit; obj->path[ptr].conditional = src->is_condit(); obj->path[ptr].posedge = src->is_posedge(); obj->path[ptr].negedge = src->is_negedge(); for (unsigned pe = 0 ; pe < 12 ; pe += 1) { obj->path[ptr].delay[pe] = src->get_delay(pe); } ptr += 1; } } return true; } void dll_target::test_version(const char*target_name) { dll_ = ivl_dlopen(target_name); if ((dll_ == 0) && (target_name[0] != '/')) { size_t len = strlen(basedir) + 1 + strlen(target_name) + 1; char*tmp = new char[len]; sprintf(tmp, "%s/%s", basedir, target_name); dll_ = ivl_dlopen(tmp); delete[]tmp; } if (dll_ == 0) { cout << "\n\nUnable to load " << target_name << " for version details." << endl; return; } target_query_f target_query = (target_query_f)ivl_dlsym(dll_, LU "target_query" TU); if (target_query == 0) { cerr << "Target " << target_name << " has no version hooks." << endl; return; } const char*version_string = (*target_query) ("version"); if (version_string == 0) { cerr << "Target " << target_name << " has no version string" << endl; return; } cout << target_name << ": " << version_string << endl; }