/* * VHDL code generation for expressions. * * Copyright (C) 2008-2009 Nick Gasson (nick@nickg.me.uk) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "vhdl_target.h" #include "support.hh" #include "state.hh" #include #include #include /* * Change the signedness of a vector. */ static vhdl_expr *change_signedness(vhdl_expr *e, bool issigned) { int msb = e->get_type()->get_msb(); int lsb = e->get_type()->get_lsb(); vhdl_type u(issigned ? VHDL_TYPE_SIGNED : VHDL_TYPE_UNSIGNED, msb, lsb); return e->cast(&u); } /* * Generate code to ensure that the VHDL expression vhd_e has the * same signedness as the Verilog expression vl_e. */ static vhdl_expr *correct_signedness(vhdl_expr *vhd_e, ivl_expr_t vl_e) { bool should_be_signed = ivl_expr_signed(vl_e) != 0; if (vhd_e->get_type()->get_name() == VHDL_TYPE_UNSIGNED && should_be_signed) { //operand->print(); //std::cout << "^ should be signed but is not" << std::endl; return change_signedness(vhd_e, true); } else if (vhd_e->get_type()->get_name() == VHDL_TYPE_SIGNED && !should_be_signed) { //operand->print(); //std::cout << "^ should be unsigned but is not" << std::endl; return change_signedness(vhd_e, false); } else return vhd_e; } /* * Convert a constant Verilog string to a constant VHDL string. */ static vhdl_expr *translate_string(ivl_expr_t e) { // TODO: May need to inspect or escape parts of this const char *str = ivl_expr_string(e); return new vhdl_const_string(str); } /* * A reference to a signal in an expression. It's assumed that the * signal has already been defined elsewhere. */ static vhdl_var_ref *translate_signal(ivl_expr_t e) { ivl_signal_t sig = ivl_expr_signal(e); const vhdl_scope *scope = find_scope_for_signal(sig); assert(scope); const char *renamed = get_renamed_signal(sig).c_str(); vhdl_decl *decl = scope->get_decl(renamed); assert(decl); // Make sure we can read from this declaration // E.g. if this is an `out' port then we need to make it a buffer decl->ensure_readable(); // Can't generate a constant initialiser for this signal // later as it has already been read if (scope->initializing()) decl->set_initial(NULL); vhdl_var_ref *ref = new vhdl_var_ref(renamed, new vhdl_type(*decl->get_type())); ivl_expr_t off; if (ivl_signal_array_count(sig) > 0 && (off = ivl_expr_oper1(e))) { // Select from an array vhdl_expr *vhd_off = translate_expr(off); if (NULL == vhd_off) { delete ref; return NULL; } vhdl_type integer(VHDL_TYPE_INTEGER); ref->set_slice(vhd_off->cast(&integer)); } return ref; } /* * A numeric literal ends up as std_logic bit string. */ static vhdl_expr *translate_number(ivl_expr_t e) { if (ivl_expr_width(e) == 1) return new vhdl_const_bit(ivl_expr_bits(e)[0]); else return new vhdl_const_bits(ivl_expr_bits(e), ivl_expr_width(e), ivl_expr_signed(e) != 0); } static vhdl_expr *translate_ulong(ivl_expr_t e) { return new vhdl_const_int(ivl_expr_uvalue(e)); } static vhdl_expr *translate_delay(ivl_expr_t e) { return scale_time(get_active_entity(), ivl_expr_delay_val(e)); } static vhdl_expr *translate_reduction(support_function_t f, bool neg, vhdl_expr *operand) { vhdl_expr *result; if (operand->get_type()->get_name() == VHDL_TYPE_STD_LOGIC) result = operand; else { require_support_function(f); vhdl_fcall *fcall = new vhdl_fcall(support_function::function_name(f), vhdl_type::std_logic()); vhdl_type std_logic_vector(VHDL_TYPE_STD_LOGIC_VECTOR); fcall->add_expr(operand->cast(&std_logic_vector)); result = fcall; } if (neg) return new vhdl_unaryop_expr(VHDL_UNARYOP_NOT, result, vhdl_type::std_logic()); else return result; } static vhdl_expr *translate_unary(ivl_expr_t e) { vhdl_expr *operand = translate_expr(ivl_expr_oper1(e)); if (NULL == operand) return NULL; operand = correct_signedness(operand, e); char opcode = ivl_expr_opcode(e); switch (opcode) { case '!': case '~': return new vhdl_unaryop_expr (VHDL_UNARYOP_NOT, operand, new vhdl_type(*operand->get_type())); case '-': operand = change_signedness(operand, true); return new vhdl_unaryop_expr (VHDL_UNARYOP_NEG, operand, new vhdl_type(*operand->get_type())); case 'N': // NOR return translate_reduction(SF_REDUCE_OR, true, operand); case '|': return translate_reduction(SF_REDUCE_OR, false, operand); case 'A': // NAND return translate_reduction(SF_REDUCE_AND, true, operand); case '&': return translate_reduction(SF_REDUCE_AND, false, operand); case '^': // XOR return translate_reduction(SF_REDUCE_XOR, false, operand); case 'X': // XNOR return translate_reduction(SF_REDUCE_XNOR, false, operand); default: error("No translation for unary opcode '%c'\n", ivl_expr_opcode(e)); delete operand; return NULL; } } /* * Translate a numeric binary operator (+, -, etc.) to * a VHDL equivalent using the numeric_std package. */ static vhdl_expr *translate_numeric(vhdl_expr *lhs, vhdl_expr *rhs, vhdl_binop_t op) { // May need to make either side Boolean for operators // to work vhdl_type boolean(VHDL_TYPE_BOOLEAN); if (lhs->get_type()->get_name() == VHDL_TYPE_BOOLEAN) rhs = rhs->cast(&boolean); else if (rhs->get_type()->get_name() == VHDL_TYPE_BOOLEAN) lhs = lhs->cast(&boolean); vhdl_type *rtype; if (op == VHDL_BINOP_MULT) rtype = new vhdl_type(lhs->get_type()->get_name(), (lhs->get_type()->get_width()*2) - 1, 0); else rtype = new vhdl_type(*lhs->get_type()); return new vhdl_binop_expr(lhs, op, rhs, rtype); } static vhdl_expr *translate_relation(vhdl_expr *lhs, vhdl_expr *rhs, vhdl_binop_t op) { // Generate any necessary casts // Arbitrarily, the RHS is casted to the type of the LHS vhdl_expr *r_cast = rhs->cast(lhs->get_type()); return new vhdl_binop_expr(lhs, op, r_cast, vhdl_type::boolean()); } /* * Like translate_relation but both operands must be Boolean. */ static vhdl_expr *translate_logical(vhdl_expr *lhs, vhdl_expr *rhs, vhdl_binop_t op) { vhdl_type boolean(VHDL_TYPE_BOOLEAN); return translate_relation(lhs->cast(&boolean), rhs->cast(&boolean), op); } static vhdl_expr *translate_shift(vhdl_expr *lhs, vhdl_expr *rhs, vhdl_binop_t op) { // The RHS must be an integer vhdl_type integer(VHDL_TYPE_INTEGER); vhdl_expr *r_cast = rhs->cast(&integer); vhdl_type *rtype = new vhdl_type(*lhs->get_type()); // The sra operator is not defined on numeric_std types until // VHDL-2006 which is not well supported. Instead we can use // the shift_right function which does the same thing and // exists in earlier versions of numeric_std. if (op == VHDL_BINOP_SRA) { vhdl_fcall *sra = new vhdl_fcall("shift_right", rtype); sra->add_expr(lhs); sra->add_expr(r_cast); return sra; } else return new vhdl_binop_expr(lhs, op, r_cast, rtype); } /* * The exponentiation operator in VHDL is not defined for numeric_std * types. We can get around this by converting the operands to integers, * performing the operation, then converting the result back to the * original type. This will work OK in simulation but certainly will not * synthesise unless the operands are constant. * * However, even this does not work quite correctly. The Integer type in * VHDL is signed and usually only 32 bits, therefore any result larger * than this will overflow and raise an exception. I can't see a way * around this at the moment. */ static vhdl_expr *translate_power(ivl_expr_t e, vhdl_expr *lhs, vhdl_expr *rhs) { vhdl_type integer(VHDL_TYPE_INTEGER); vhdl_expr *lhs_int = lhs->cast(&integer); vhdl_expr *rhs_int = rhs->cast(&integer); vhdl_expr *result = new vhdl_binop_expr(lhs_int, VHDL_BINOP_POWER, rhs_int, vhdl_type::integer()); int width = ivl_expr_width(e); const char *func = ivl_expr_signed(e) ? "To_Signed" : "To_Unsigned"; vhdl_type *type = ivl_expr_signed(e) ? vhdl_type::nsigned(width) : vhdl_type::nunsigned(width); vhdl_fcall *conv = new vhdl_fcall(func, type); conv->add_expr(result); conv->add_expr(new vhdl_const_int(width)); return conv; } static vhdl_expr *translate_binary(ivl_expr_t e) { vhdl_expr *lhs = translate_expr(ivl_expr_oper1(e)); if (NULL == lhs) return NULL; vhdl_expr *rhs = translate_expr(ivl_expr_oper2(e)); if (NULL == rhs) return NULL; int lwidth = lhs->get_type()->get_width(); int rwidth = rhs->get_type()->get_width(); int result_width = ivl_expr_width(e); // For === and !== we need to compare std_logic_vectors // rather than signeds vhdl_type std_logic_vector(VHDL_TYPE_STD_LOGIC_VECTOR, result_width-1, 0); vhdl_type_name_t ltype = lhs->get_type()->get_name(); vhdl_type_name_t rtype = rhs->get_type()->get_name(); bool vectorop = (ltype == VHDL_TYPE_SIGNED || ltype == VHDL_TYPE_UNSIGNED) && (rtype == VHDL_TYPE_SIGNED || rtype == VHDL_TYPE_UNSIGNED); // May need to resize the left or right hand side or change the // signedness if (vectorop) { if (lwidth < rwidth) lhs = lhs->resize(rwidth); else if (rwidth < lwidth) rhs = rhs->resize(lwidth); lhs = correct_signedness(lhs, ivl_expr_oper1(e)); rhs = correct_signedness(rhs, ivl_expr_oper2(e)); } vhdl_expr *result; switch (ivl_expr_opcode(e)) { case '+': result = translate_numeric(lhs, rhs, VHDL_BINOP_ADD); break; case '-': result = translate_numeric(lhs, rhs, VHDL_BINOP_SUB); break; case '*': result = translate_numeric(lhs, rhs, VHDL_BINOP_MULT); break; case '/': result = translate_numeric(lhs, rhs, VHDL_BINOP_DIV); break; case '%': result = translate_numeric(lhs, rhs, VHDL_BINOP_MOD); break; case 'e': result = translate_relation(lhs, rhs, VHDL_BINOP_EQ); break; case 'E': if (vectorop) result = translate_relation(lhs->cast(&std_logic_vector), rhs->cast(&std_logic_vector), VHDL_BINOP_EQ); else result = translate_relation(lhs, rhs, VHDL_BINOP_EQ); break; case 'n': result = translate_relation(lhs, rhs, VHDL_BINOP_NEQ); break; case 'N': if (vectorop) result = translate_relation(lhs->cast(&std_logic_vector), rhs->cast(&std_logic_vector), VHDL_BINOP_NEQ); else result = translate_relation(lhs, rhs, VHDL_BINOP_NEQ); break; case '&': // Bitwise AND result = translate_numeric(lhs, rhs, VHDL_BINOP_AND); break; case 'a': // Logical AND result = translate_logical(lhs, rhs, VHDL_BINOP_AND); break; case 'A': // Bitwise NAND result = translate_numeric(lhs, rhs, VHDL_BINOP_NAND); break; case 'O': // Bitwise NOR result = translate_numeric(lhs, rhs, VHDL_BINOP_NOR); break; case 'X': // Bitwise XNOR result = translate_numeric(lhs, rhs, VHDL_BINOP_XNOR); break; case '|': // Bitwise OR result = translate_numeric(lhs, rhs, VHDL_BINOP_OR); break; case 'o': // Logical OR result = translate_logical(lhs, rhs, VHDL_BINOP_OR); break; case '<': result = translate_relation(lhs, rhs, VHDL_BINOP_LT); break; case 'L': result = translate_relation(lhs, rhs, VHDL_BINOP_LEQ); break; case '>': result = translate_relation(lhs, rhs, VHDL_BINOP_GT); break; case 'G': result = translate_relation(lhs, rhs, VHDL_BINOP_GEQ); break; case 'l': result = translate_shift(lhs, rhs, VHDL_BINOP_SL); break; case 'r': result = translate_shift(lhs, rhs, VHDL_BINOP_SR); break; case 'R': // Arithmetic right shift // Verilog only actually performs a signed shift if the // argument being shifted is signed, otherwise it defaults // to a normal shift if (ivl_expr_signed(ivl_expr_oper1(e))) result = translate_shift(lhs, rhs, VHDL_BINOP_SRA); else result = translate_shift(lhs, rhs, VHDL_BINOP_SR); break; case '^': result = translate_numeric(lhs, rhs, VHDL_BINOP_XOR); break; case 'p': // Power result = translate_power(e, lhs, rhs); break; default: error("No translation for binary opcode '%c'\n", ivl_expr_opcode(e)); delete lhs; delete rhs; return NULL; } if (NULL == result) return NULL; if (vectorop) { result = correct_signedness(result, e); int actual_width = result->get_type()->get_width(); if (actual_width != result_width) { //result->print(); //std::cout << "^ should be " << result_width << " but is " << actual_width << std::endl; } } return result; } static vhdl_expr *translate_select(ivl_expr_t e) { vhdl_expr *from = translate_expr(ivl_expr_oper1(e)); if (NULL == from) return NULL; ivl_expr_t o2 = ivl_expr_oper2(e); if (o2) { vhdl_expr *base = translate_expr(ivl_expr_oper2(e)); if (NULL == base) return NULL; vhdl_var_ref *from_var_ref = dynamic_cast(from); if (NULL == from_var_ref) { // We can't directly select bits from something that's not // a variable reference in VHDL, but we can emulate the // effect with a shift and a resize return new vhdl_binop_expr(from, VHDL_BINOP_SR, base->to_integer(), new vhdl_type(*from->get_type())); } else if (from_var_ref->get_type()->get_name() != VHDL_TYPE_STD_LOGIC) { // We can use the more idomatic VHDL slice notation on a // single variable reference vhdl_type integer(VHDL_TYPE_INTEGER); from_var_ref->set_slice(base->cast(&integer), ivl_expr_width(e) - 1); return from_var_ref; } else { // Make sure we're not trying to select more than one bit // from a std_logic (this shouldn't actually happen) if (ivl_expr_width(e) > 1) { error("%s:%d: trying to select more than one bit from a std_logic", ivl_expr_file(e), ivl_expr_lineno(e)); return NULL; } else return from_var_ref; } } else return from->resize(ivl_expr_width(e)); } template static T *translate_parms(T *t, ivl_expr_t e) { int nparams = ivl_expr_parms(e); for (int i = 0; i < nparams; i++) { vhdl_expr *param = translate_expr(ivl_expr_parm(e, i)); if (NULL == param) return NULL; t->add_expr(param); } return t; } static vhdl_expr *translate_ufunc(ivl_expr_t e) { ivl_scope_t defscope = ivl_expr_def(e); ivl_scope_t parentscope = ivl_scope_parent(defscope); assert(ivl_scope_type(parentscope) == IVL_SCT_MODULE); // A function is always declared in a module, which should have // a corresponding entity by this point: so we can get type // information, etc. from the declaration vhdl_entity *parent_ent = find_entity(parentscope); assert(parent_ent); const char *funcname = ivl_scope_tname(defscope); vhdl_type *rettype = vhdl_type::type_for(ivl_expr_width(e), ivl_expr_signed(e) != 0); vhdl_fcall *fcall = new vhdl_fcall(funcname, rettype); int nparams = ivl_expr_parms(e); for (int i = 0; i < nparams; i++) { vhdl_expr *param = translate_expr(ivl_expr_parm(e, i)); if (NULL == param) { delete fcall; return NULL; } // Ensure the parameter has the correct VHDL type // Parameter number is i + 1 since 0th parameter is return value ivl_signal_t param_sig = ivl_scope_port(defscope, i + 1); vhdl_type *param_type = vhdl_type::type_for(ivl_signal_width(param_sig), ivl_signal_signed(param_sig) != 0); fcall->add_expr(param->cast(param_type)); delete param_type; } return fcall; } static vhdl_expr *translate_ternary(ivl_expr_t e) { support_function_t sf; int width = ivl_expr_width(e); bool issigned = ivl_expr_signed(e) != 0; if (width == 1) sf = SF_TERNARY_LOGIC; else if (issigned) sf = SF_TERNARY_SIGNED; else sf = SF_TERNARY_UNSIGNED; require_support_function(sf); vhdl_expr *test = translate_expr(ivl_expr_oper1(e)); vhdl_expr *true_part = translate_expr(ivl_expr_oper2(e)); vhdl_expr *false_part = translate_expr(ivl_expr_oper3(e)); if (!test || !true_part || !false_part) return NULL; vhdl_type boolean(VHDL_TYPE_BOOLEAN); test = test->cast(&boolean); vhdl_fcall *fcall = new vhdl_fcall(support_function::function_name(sf), vhdl_type::type_for(width, issigned)); fcall->add_expr(test); fcall->add_expr(true_part); fcall->add_expr(false_part); return fcall; } static vhdl_expr *translate_concat(ivl_expr_t e) { vhdl_type *rtype = vhdl_type::type_for(ivl_expr_width(e), ivl_expr_signed(e) != 0); vhdl_binop_expr *concat = new vhdl_binop_expr(VHDL_BINOP_CONCAT, rtype); int nrepeat = ivl_expr_repeat(e); while (nrepeat--) translate_parms(concat, e); return concat; } vhdl_expr *translate_sfunc_time(ivl_expr_t e) { cerr << "warning: no translation for $time (returning 0)" << endl; vhdl_expr *result = new vhdl_const_int(0); result->set_comment("$time not supported, returned 0 instead!"); return result; } vhdl_expr *translate_sfunc_stime(ivl_expr_t e) { cerr << "warning: no translation for $stime (returning 0)" << endl; vhdl_expr *result = new vhdl_const_int(0); result->set_comment("$stime not supported, returned 0 instead!"); return result; } vhdl_expr *translate_sfunc_simtime(ivl_expr_t e) { cerr << "warning: no translation for $simtime (returning 0)" << endl; vhdl_expr *result = new vhdl_const_int(0); result->set_comment("$simtime not supported, returned 0 instead!"); return result; } vhdl_expr *translate_sfunc_random(ivl_expr_t e) { cerr << "warning: no translation for $random (returning 0)" << endl; vhdl_expr *result = new vhdl_const_int(0); result->set_comment("$random not supported, returned 0 instead!"); return result; } vhdl_expr *translate_sfunc_fopen(ivl_expr_t e) { cerr << "warning: no translation for $fopen (returning 0)" << endl; vhdl_expr *result = new vhdl_const_int(0); result->set_comment("$fopen not supported, returned 0 instead!"); return result; } vhdl_expr *translate_sfunc(ivl_expr_t e) { const char *name = ivl_expr_name(e); if (strcmp(name, "$time") == 0) return translate_sfunc_time(e); else if (strcmp(name, "$stime") == 0) return translate_sfunc_stime(e); else if (strcmp(name, "$simtime") == 0) return translate_sfunc_simtime(e); else if (strcmp(name, "$random") == 0) return translate_sfunc_random(e); else if (strcmp(name, "$fopen") == 0) return translate_sfunc_random(e); else { error("No translation for system function %s", name); return NULL; } } /* * Generate a VHDL expression from a Verilog expression. */ vhdl_expr *translate_expr(ivl_expr_t e) { assert(e); ivl_expr_type_t type = ivl_expr_type(e); switch (type) { case IVL_EX_STRING: return translate_string(e); case IVL_EX_SIGNAL: return translate_signal(e); case IVL_EX_NUMBER: return translate_number(e); case IVL_EX_ULONG: return translate_ulong(e); case IVL_EX_UNARY: return translate_unary(e); case IVL_EX_BINARY: return translate_binary(e); case IVL_EX_SELECT: return translate_select(e); case IVL_EX_UFUNC: return translate_ufunc(e); case IVL_EX_TERNARY: return translate_ternary(e); case IVL_EX_CONCAT: return translate_concat(e); case IVL_EX_SFUNC: return translate_sfunc(e); case IVL_EX_DELAY: return translate_delay(e); case IVL_EX_REALNUM: error("No VHDL translation for real expression at %s:%d", ivl_expr_file(e), ivl_expr_lineno(e)); return NULL; default: error("No VHDL translation for expression at %s:%d (type = %d)", ivl_expr_file(e), ivl_expr_lineno(e), type); return NULL; } } /* * Translate an expression into a time. This is achieved simply * by multiplying the expression by 1ns. */ vhdl_expr *translate_time_expr(ivl_expr_t e) { vhdl_expr *time = translate_expr(e); if (NULL == time) return NULL; if (time->get_type()->get_name() != VHDL_TYPE_TIME) { vhdl_type integer(VHDL_TYPE_INTEGER); time = time->cast(&integer); vhdl_expr *ns1 = scale_time(get_active_entity(), 1); return new vhdl_binop_expr(time, VHDL_BINOP_MULT, ns1, vhdl_type::time()); } else // Translating IVL_EX_DELAY will always return a time type return time; }