/* * Copyright (c) 2000-2009 Stephen Williams (steve@icarus.com) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version.will need a Picture Elements Binary Software * License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ # include "config.h" # include # include # include "target.h" # include "ivl_target.h" # include "compiler.h" # include "t-dll.h" #ifdef HAVE_MALLOC_H # include #endif # include bool dll_target::process(const NetProcTop*net) { bool rc_flag = true; ivl_process_t obj = (struct ivl_process_s*) calloc(1, sizeof(struct ivl_process_s)); obj->type_ = net->type(); obj->analog_flag = 0; FILE_NAME(obj, net); /* Save the scope of the process. */ obj->scope_ = lookup_scope_(net->scope()); obj->nattr = net->attr_cnt(); obj->attr = fill_in_attributes(net); /* This little bit causes the process to be completely generated so that it can be passed to the DLL. The stmt_cur_ member is used to hold a pointer to the current statement in progress, and the emit_proc() method fills in that object. We know a few things about the current statement: we are not in the middle of one, and when we are done, we have our statement back. The asserts check these conditions. */ assert(stmt_cur_ == 0); stmt_cur_ = (struct ivl_statement_s*)calloc(1, sizeof*stmt_cur_); assert(stmt_cur_); rc_flag = net->statement()->emit_proc(this) && rc_flag; assert(stmt_cur_); obj->stmt_ = stmt_cur_; stmt_cur_ = 0; /* Save the process in the design. */ obj->next_ = des_.threads_; des_.threads_ = obj; return rc_flag; } void dll_target::task_def(const NetScope*net) { ivl_scope_t scop = lookup_scope_(net); const NetTaskDef*def = net->task_def(); assert(stmt_cur_ == 0); stmt_cur_ = (struct ivl_statement_s*)calloc(1, sizeof*stmt_cur_); assert(stmt_cur_); def->proc()->emit_proc(this); assert(stmt_cur_); scop->def = stmt_cur_; stmt_cur_ = 0; } bool dll_target::func_def(const NetScope*net) { ivl_scope_t scop = lookup_scope_(net); const NetFuncDef*def = net->func_def(); assert(stmt_cur_ == 0); stmt_cur_ = (struct ivl_statement_s*)calloc(1, sizeof*stmt_cur_); assert(stmt_cur_); def->proc()->emit_proc(this); assert(stmt_cur_); scop->def = stmt_cur_; stmt_cur_ = 0; scop->ports = def->port_count() + 1; if (scop->ports > 0) { scop->port = new ivl_signal_t[scop->ports]; for (unsigned idx = 1 ; idx < scop->ports ; idx += 1) scop->port[idx] = find_signal(des_, def->port(idx-1)); } /* FIXME: the ivl_target API expects port-0 to be the output port. This assumes that the return value is a signal, which is *not* correct. Someday, I'm going to have to change this, but that will break code generators that use this result. */ if (const NetNet*ret_sig = def->return_sig()) { scop->port[0] = find_signal(des_, ret_sig); return true; } cerr << "?:0" << ": internal error: " << "Function " << net->basename() << " has a return type" << " that I do not understand." << endl; return false; } /* * This private function makes the assignment lvals for the various * kinds of assignment statements. */ void dll_target::make_assign_lvals_(const NetAssignBase*net) { assert(stmt_cur_); unsigned cnt = net->l_val_count(); stmt_cur_->u_.assign_.lvals_ = cnt; stmt_cur_->u_.assign_.lval_ = new struct ivl_lval_s[cnt]; stmt_cur_->u_.assign_.delay = 0; for (unsigned idx = 0 ; idx < cnt ; idx += 1) { struct ivl_lval_s*cur = stmt_cur_->u_.assign_.lval_ + idx; const NetAssign_*asn = net->l_val(idx); const NetExpr*loff = asn->get_base(); if (loff == 0) { cur->loff = 0; } else { loff->expr_scan(this); cur->loff = expr_; expr_ = 0; } cur->width_ = asn->lwidth(); if (asn->sig()) { cur->type_ = IVL_LVAL_REG; cur->n.sig = find_signal(des_, asn->sig()); cur->idx = 0; // If there is a word select expression, it is // really an array index. Note that the word index // expression is already converted to canonical // form by elaboration. if (asn->word()) { assert(expr_ == 0); asn->word()->expr_scan(this); cur->type_ = IVL_LVAL_ARR; cur->idx = expr_; expr_ = 0; } } else { assert(0); } } } void dll_target::proc_alloc(const NetAlloc*net) { assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); FILE_NAME(stmt_cur_, net); stmt_cur_->type_ = IVL_ST_ALLOC; stmt_cur_->u_.alloc_.scope = lookup_scope_(net->scope()); } /* */ bool dll_target::proc_assign(const NetAssign*net) { assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); stmt_cur_->type_ = IVL_ST_ASSIGN; FILE_NAME(stmt_cur_, net); stmt_cur_->u_.assign_.delay = 0; /* Make the lval fields. */ make_assign_lvals_(net); assert(expr_ == 0); net->rval()->expr_scan(this); stmt_cur_->u_.assign_.rval_ = expr_; expr_ = 0; const NetExpr*del = net->get_delay(); if (del) { del->expr_scan(this); stmt_cur_->u_.assign_.delay = expr_; expr_ = 0; } return true; } void dll_target::proc_assign_nb(const NetAssignNB*net) { const NetExpr* delay_exp = net->get_delay(); const NetExpr* cnt_exp = net->get_count(); assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); stmt_cur_->type_ = IVL_ST_ASSIGN_NB; FILE_NAME(stmt_cur_, net); stmt_cur_->u_.assign_.delay = 0; stmt_cur_->u_.assign_.count = 0; stmt_cur_->u_.assign_.nevent = 0; /* Make the lval fields. */ make_assign_lvals_(net); /* Make the rval field. */ assert(expr_ == 0); net->rval()->expr_scan(this); stmt_cur_->u_.assign_.rval_ = expr_; expr_ = 0; /* Process a delay if it exists. */ if (const NetEConst*delay_num = dynamic_cast(delay_exp)) { verinum val = delay_num->value(); ivl_expr_t de = new struct ivl_expr_s; de->type_ = IVL_EX_DELAY; de->width_ = 8 * sizeof(uint64_t); de->signed_ = 0; de->u_.delay_.value = val.as_ulong64(); stmt_cur_->u_.assign_.delay = de; } else if (delay_exp != 0) { delay_exp->expr_scan(this); stmt_cur_->u_.assign_.delay = expr_; expr_ = 0; } /* Process a count if it exists. */ if (const NetEConst*cnt_num = dynamic_cast(cnt_exp)) { verinum val = cnt_num->value(); ivl_expr_t cnt = new struct ivl_expr_s; cnt->type_ = IVL_EX_ULONG; cnt->width_ = 8 * sizeof(unsigned long); cnt->signed_ = 0; cnt->u_.ulong_.value = val.as_ulong(); stmt_cur_->u_.assign_.count = cnt; } else if (cnt_exp != 0) { cnt_exp->expr_scan(this); stmt_cur_->u_.assign_.count = expr_; expr_ = 0; } /* Process the events if they exist. This is a copy of code * from NetEvWait below. */ if (net->nevents() > 0) { stmt_cur_->u_.assign_.nevent = net->nevents(); if (net->nevents() > 1) { stmt_cur_->u_.assign_.events = (ivl_event_t*) calloc(net->nevents(), sizeof(ivl_event_t*)); } for (unsigned edx = 0 ; edx < net->nevents() ; edx += 1) { /* Locate the event by name. Save the ivl_event_t in the statement so that the generator can find it easily. */ const NetEvent*ev = net->event(edx); ivl_scope_t ev_scope = lookup_scope_(ev->scope()); ivl_event_t ev_tmp=0; assert(ev_scope); assert(ev_scope->nevent_ > 0); for (unsigned idx = 0; idx < ev_scope->nevent_; idx += 1) { const char*ename = ivl_event_basename(ev_scope->event_[idx]); if (strcmp(ev->name(), ename) == 0) { ev_tmp = ev_scope->event_[idx]; break; } } // XXX should we assert(ev_tmp)? if (net->nevents() == 1) stmt_cur_->u_.assign_.event = ev_tmp; else stmt_cur_->u_.assign_.events[edx] = ev_tmp; /* If this is an event with a probe, then connect up the pins. This wasn't done during the ::event method because the signals weren't scanned yet. */ if (ev->nprobe() >= 1) { unsigned iany = 0; unsigned ineg = ev_tmp->nany; unsigned ipos = ineg + ev_tmp->nneg; for (unsigned idx = 0; idx < ev->nprobe(); idx += 1) { const NetEvProbe*pr = ev->probe(idx); unsigned base = 0; switch (pr->edge()) { case NetEvProbe::ANYEDGE: base = iany; iany += pr->pin_count(); break; case NetEvProbe::NEGEDGE: base = ineg; ineg += pr->pin_count(); break; case NetEvProbe::POSEDGE: base = ipos; ipos += pr->pin_count(); break; } for (unsigned bit = 0; bit < pr->pin_count(); bit += 1) { ivl_nexus_t nex = (ivl_nexus_t) pr->pin(bit).nexus()->t_cookie(); assert(nex); ev_tmp->pins[base+bit] = nex; } } } } } } bool dll_target::proc_block(const NetBlock*net) { assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); FILE_NAME(stmt_cur_, net); /* First, count the statements in the block. */ unsigned count = 0; for (const NetProc*cur = net->proc_first() ; cur ; cur = net->proc_next(cur)) count += 1; /* If the block has no statements, then turn it into a no-op */ if (count == 0) { stmt_cur_->type_ = IVL_ST_NOOP; return true; } /* If there is exactly one statement, there is no need for the block wrapper, generate the contained statement instead. */ if ((count == 1) && (net->subscope() == 0)) { return net->proc_first()->emit_proc(this); } /* Handle the general case. The block has some statements in it, so fill in the block fields of the existing statement, and generate the contents for the statement array. */ stmt_cur_->type_ = (net->type() == NetBlock::SEQU) ? IVL_ST_BLOCK : IVL_ST_FORK; stmt_cur_->u_.block_.nstmt_ = count; stmt_cur_->u_.block_.stmt_ = (struct ivl_statement_s*) calloc(count, sizeof(struct ivl_statement_s)); if (net->subscope()) stmt_cur_->u_.block_.scope = lookup_scope_(net->subscope()); else stmt_cur_->u_.block_.scope = 0; struct ivl_statement_s*save_cur_ = stmt_cur_; unsigned idx = 0; bool flag = true; for (const NetProc*cur = net->proc_first() ; cur ; cur = net->proc_next(cur), idx += 1) { assert(idx < count); stmt_cur_ = save_cur_->u_.block_.stmt_ + idx; bool rc = cur->emit_proc(this); flag = flag && rc; } assert(idx == count); stmt_cur_ = save_cur_; return flag; } /* * A case statement is in turn an array of statements with gate * expressions. This builds arrays of the right size and builds the * ivl_expr_t and ivl_statement_s arrays for the substatements. */ void dll_target::proc_case(const NetCase*net) { assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); FILE_NAME(stmt_cur_, net); switch (net->type()) { case NetCase::EQ: stmt_cur_->type_ = IVL_ST_CASE; break; case NetCase::EQX: stmt_cur_->type_ = IVL_ST_CASEX; break; case NetCase::EQZ: stmt_cur_->type_ = IVL_ST_CASEZ; break; } assert(stmt_cur_->type_ != IVL_ST_NONE); assert(expr_ == 0); assert(net->expr()); net->expr()->expr_scan(this); stmt_cur_->u_.case_.cond = expr_; expr_ = 0; /* If the condition expression is a real valued expression, then change the case statement to a CASER statement. */ if (stmt_cur_->u_.case_.cond->value_ == IVL_VT_REAL) stmt_cur_->type_ = IVL_ST_CASER; unsigned ncase = net->nitems(); stmt_cur_->u_.case_.ncase = ncase; stmt_cur_->u_.case_.case_ex = new ivl_expr_t[ncase]; stmt_cur_->u_.case_.case_st = new struct ivl_statement_s[ncase]; ivl_statement_t save_cur = stmt_cur_; for (unsigned idx = 0 ; idx < ncase ; idx += 1) { const NetExpr*ex = net->expr(idx); if (ex) { ex->expr_scan(this); save_cur->u_.case_.case_ex[idx] = expr_; expr_ = 0; } else { save_cur->u_.case_.case_ex[idx] = 0; } stmt_cur_ = save_cur->u_.case_.case_st + idx; stmt_cur_->type_ = IVL_ST_NONE; if (net->stat(idx) == 0) { stmt_cur_->type_ = IVL_ST_NOOP; } else { net->stat(idx)->emit_proc(this); } } stmt_cur_ = save_cur; } bool dll_target::proc_cassign(const NetCAssign*net) { assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); FILE_NAME(stmt_cur_, net); stmt_cur_->type_ = IVL_ST_CASSIGN; /* Make the l-value fields. */ make_assign_lvals_(net); assert(expr_ == 0); net->rval()->expr_scan(this); stmt_cur_->u_.assign_.rval_ = expr_; expr_ = 0; return true; } bool dll_target::proc_condit(const NetCondit*net) { bool rc_flag = true; assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); FILE_NAME(stmt_cur_, net); stmt_cur_->type_ = IVL_ST_CONDIT; stmt_cur_->u_.condit_.stmt_ = (struct ivl_statement_s*) calloc(2, sizeof(struct ivl_statement_s)); assert(expr_ == 0); net->expr()->expr_scan(this); stmt_cur_->u_.condit_.cond_ = expr_; if (expr_ == 0) rc_flag = false; expr_ = 0; ivl_statement_t save_cur_ = stmt_cur_; stmt_cur_ = save_cur_->u_.condit_.stmt_+0; rc_flag = net->emit_recurse_if(this) && rc_flag; stmt_cur_ = save_cur_->u_.condit_.stmt_+1; rc_flag = net->emit_recurse_else(this) && rc_flag; stmt_cur_ = save_cur_; return rc_flag; } bool dll_target::proc_deassign(const NetDeassign*net) { assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); FILE_NAME(stmt_cur_, net); stmt_cur_->type_ = IVL_ST_DEASSIGN; /* Make the l-value fields. */ make_assign_lvals_(net); return true; } bool dll_target::proc_delay(const NetPDelay*net) { assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); FILE_NAME(stmt_cur_, net); ivl_statement_t tmp = (struct ivl_statement_s*) calloc(1, sizeof(struct ivl_statement_s)); if (const NetExpr*expr = net->expr()) { stmt_cur_->type_ = IVL_ST_DELAYX; assert(expr_ == 0); expr->expr_scan(this); stmt_cur_->u_.delayx_.expr = expr_; expr_ = 0; stmt_cur_->u_.delayx_.stmt_ = tmp; } else { stmt_cur_->type_ = IVL_ST_DELAY; stmt_cur_->u_.delay_.stmt_ = tmp; stmt_cur_->u_.delay_.value = net->delay(); } ivl_statement_t save_cur_ = stmt_cur_; stmt_cur_ = tmp; bool flag = net->emit_proc_recurse(this); /* If the recurse doesn't turn this new item into something, then either it failed or there is no statement there. Either way, draw a no-op into the statement. */ if (stmt_cur_->type_ == IVL_ST_NONE) { stmt_cur_->type_ = IVL_ST_NOOP; } stmt_cur_ = save_cur_; return flag; } bool dll_target::proc_disable(const NetDisable*net) { assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); FILE_NAME(stmt_cur_, net); stmt_cur_->type_ = IVL_ST_DISABLE; stmt_cur_->u_.disable_.scope = lookup_scope_(net->target()); return true; } bool dll_target::proc_force(const NetForce*net) { assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); stmt_cur_->type_ = IVL_ST_FORCE; /* Make the l-value fields. */ make_assign_lvals_(net); assert(expr_ == 0); net->rval()->expr_scan(this); stmt_cur_->u_.assign_.rval_ = expr_; expr_ = 0; return true; } void dll_target::proc_forever(const NetForever*net) { assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); FILE_NAME(stmt_cur_, net); stmt_cur_->type_ = IVL_ST_FOREVER; ivl_statement_t tmp = (struct ivl_statement_s*) calloc(1, sizeof(struct ivl_statement_s)); ivl_statement_t save_cur_ = stmt_cur_; stmt_cur_ = tmp; net->emit_recurse(this); save_cur_->u_.forever_.stmt_ = stmt_cur_; stmt_cur_ = save_cur_; } void dll_target::proc_free(const NetFree*net) { assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); FILE_NAME(stmt_cur_, net); stmt_cur_->type_ = IVL_ST_FREE; stmt_cur_->u_.free_.scope = lookup_scope_(net->scope()); } bool dll_target::proc_release(const NetRelease*net) { assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); FILE_NAME(stmt_cur_, net); stmt_cur_->type_ = IVL_ST_RELEASE; /* Make the l-value fields. */ make_assign_lvals_(net); return true; } void dll_target::proc_repeat(const NetRepeat*net) { assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); FILE_NAME(stmt_cur_, net); stmt_cur_->type_ = IVL_ST_REPEAT; assert(expr_ == 0); net->expr()->expr_scan(this); stmt_cur_->u_.while_.cond_ = expr_; expr_ = 0; ivl_statement_t tmp = (struct ivl_statement_s*) calloc(1, sizeof(struct ivl_statement_s)); ivl_statement_t save_cur_ = stmt_cur_; stmt_cur_ = tmp; net->emit_recurse(this); save_cur_->u_.while_.stmt_ = stmt_cur_; stmt_cur_ = save_cur_; } void dll_target::proc_stask(const NetSTask*net) { unsigned nparms = net->nparms(); assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); FILE_NAME(stmt_cur_, net); stmt_cur_->type_ = IVL_ST_STASK; /* System task names are lex_strings strings. */ stmt_cur_->u_.stask_.name_ = net->name(); stmt_cur_->u_.stask_.nparm_= nparms; stmt_cur_->u_.stask_.parms_= (ivl_expr_t*) calloc(nparms, sizeof(ivl_expr_t)); for (unsigned idx = 0 ; idx < nparms ; idx += 1) { if (net->parm(idx)) net->parm(idx)->expr_scan(this); stmt_cur_->u_.stask_.parms_[idx] = expr_; expr_ = 0; } } bool dll_target::proc_trigger(const NetEvTrig*net) { assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); FILE_NAME(stmt_cur_, net); stmt_cur_->type_ = IVL_ST_TRIGGER; stmt_cur_->u_.wait_.nevent = 1; /* Locate the event by name. Save the ivl_event_t in the statement so that the generator can find it easily. */ const NetEvent*ev = net->event(); ivl_scope_t ev_scope = lookup_scope_(ev->scope()); for (unsigned idx = 0 ; idx < ev_scope->nevent_ ; idx += 1) { const char*ename = ivl_event_basename(ev_scope->event_[idx]); if (strcmp(ev->name(), ename) == 0) { stmt_cur_->u_.wait_.event = ev_scope->event_[idx]; break; } } return true; } void dll_target::proc_utask(const NetUTask*net) { assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); FILE_NAME(stmt_cur_, net); stmt_cur_->type_ = IVL_ST_UTASK; stmt_cur_->u_.utask_.def = lookup_scope_(net->task()); } bool dll_target::proc_wait(const NetEvWait*net) { assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); FILE_NAME(stmt_cur_, net); stmt_cur_->type_ = IVL_ST_WAIT; stmt_cur_->u_.wait_.stmt_ = (struct ivl_statement_s*) calloc(1, sizeof(struct ivl_statement_s)); // This event processing code is also in the NB assign above. stmt_cur_->u_.wait_.nevent = net->nevents(); if (net->nevents() > 1) { stmt_cur_->u_.wait_.events = (ivl_event_t*) calloc(net->nevents(), sizeof(ivl_event_t*)); } for (unsigned edx = 0 ; edx < net->nevents() ; edx += 1) { /* Locate the event by name. Save the ivl_event_t in the statement so that the generator can find it easily. */ const NetEvent*ev = net->event(edx); ivl_scope_t ev_scope = lookup_scope_(ev->scope()); ivl_event_t ev_tmp=0; assert(ev_scope); assert(ev_scope->nevent_ > 0); for (unsigned idx = 0 ; idx < ev_scope->nevent_ ; idx += 1) { const char*ename = ivl_event_basename(ev_scope->event_[idx]); if (strcmp(ev->name(), ename) == 0) { ev_tmp = ev_scope->event_[idx]; break; } } // XXX should we assert(ev_tmp)? if (net->nevents() == 1) stmt_cur_->u_.wait_.event = ev_tmp; else stmt_cur_->u_.wait_.events[edx] = ev_tmp; /* If this is an event with a probe, then connect up the pins. This wasn't done during the ::event method because the signals weren't scanned yet. */ if (ev->nprobe() >= 1) { unsigned iany = 0; unsigned ineg = ev_tmp->nany; unsigned ipos = ineg + ev_tmp->nneg; for (unsigned idx = 0 ; idx < ev->nprobe() ; idx += 1) { const NetEvProbe*pr = ev->probe(idx); unsigned base = 0; switch (pr->edge()) { case NetEvProbe::ANYEDGE: base = iany; iany += pr->pin_count(); break; case NetEvProbe::NEGEDGE: base = ineg; ineg += pr->pin_count(); break; case NetEvProbe::POSEDGE: base = ipos; ipos += pr->pin_count(); break; } for (unsigned bit = 0 ; bit < pr->pin_count() ; bit += 1) { ivl_nexus_t nex = (ivl_nexus_t) pr->pin(bit).nexus()->t_cookie(); assert(nex); ev_tmp->pins[base+bit] = nex; } } } } /* The ivl_statement_t for the wait statement is not complete until we calculate the sub-statement. */ ivl_statement_t save_cur_ = stmt_cur_; stmt_cur_ = stmt_cur_->u_.wait_.stmt_; bool flag = net->emit_recurse(this); if (flag && (stmt_cur_->type_ == IVL_ST_NONE)) stmt_cur_->type_ = IVL_ST_NOOP; stmt_cur_ = save_cur_; return flag; } void dll_target::proc_while(const NetWhile*net) { assert(stmt_cur_); assert(stmt_cur_->type_ == IVL_ST_NONE); FILE_NAME(stmt_cur_, net); stmt_cur_->type_ = IVL_ST_WHILE; stmt_cur_->u_.while_.stmt_ = (struct ivl_statement_s*) calloc(1, sizeof(struct ivl_statement_s)); assert(expr_ == 0); net->expr()->expr_scan(this); stmt_cur_->u_.while_.cond_ = expr_; expr_ = 0; /* Now generate the statement of the while loop. We know it is a single statement, and we know that the emit_proc_recurse() will call emit_proc() for it. */ ivl_statement_t save_cur_ = stmt_cur_; stmt_cur_ = save_cur_->u_.while_.stmt_; net->emit_proc_recurse(this); stmt_cur_ = save_cur_; }