/* * Copyright (c) 2002-2008 Stephen Williams (steve@icarus.com) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ # include "config.h" # include "functor.h" # include "netlist.h" # include "netmisc.h" # include "compiler.h" # include bool NetProc::synth_async(Design*des, NetScope*scope, const NetBus&nex_map, NetBus&nex_out) { return false; } bool NetProc::synth_sync(Design*des, NetScope*scope, NetFF*ff, const NetBus&nex_map, NetBus&nex_out, const svector&events) { if (events.count() > 0) { cerr << get_fileline() << ": error: Events are unaccounted" << " for in process synthesis." << endl; des->errors += 1; } /* Synthesize the input to the DFF. */ return synth_async(des, scope, nex_map, nex_out); } /* * Async synthesis of assignments is done by synthesizing the rvalue * expression, then connecting the l-value directly to the output of * the r-value. * * The nex_map is the O-set for the statement, and lists the positions * of the outputs as the caller wants results linked up. The nex_out, * however, is the set of nexa that are to actually get linked to the * r-value. */ bool NetAssignBase::synth_async(Design*des, NetScope*scope, const NetBus&nex_map, NetBus&nex_out) { NetNet*rsig = rval_->synthesize(des, scope, rval_); assert(rsig); NetNet*lsig = lval_->sig(); if (!lsig) { cerr << get_fileline() << ": error: " << "NetAssignBase::synth_async on unsupported lval "; dump_lval(cerr); cerr << endl; des->errors += 1; return false; } assert(lval_->more == 0); if (debug_synth2) { cerr << get_fileline() << ": debug: l-value signal is " << lsig->vector_width() << " bits, r-value signal is " << rsig->vector_width() << " bits." << endl; } /* For now, assume there is exactly one output. */ assert(nex_out.pin_count() == 1); connect(nex_out.pin(0), rsig->pin(0)); /* This lval_ represents a reg that is a WIRE in the synthesized results. This function signals the destructor to change the REG that this l-value refers to into a WIRE. It is done then, at the last minute, so that pending synthesis can continue to work with it as a WIRE. */ lval_->turn_sig_to_wire_on_release(); return true; } /* * Sequential blocks are translated to asynchronous logic by * translating each statement of the block, in order, into gates. The * nex_out for the block is the union of the nex_out for all the * substatements. */ bool NetBlock::synth_async(Design*des, NetScope*scope, const NetBus&nex_map, NetBus&nex_out) { if (last_ == 0) { return true; } bool flag = true; NetProc*cur = last_; do { cur = cur->next_; /* Create a temporary map of the output only from this statement. */ NexusSet tmp_set; cur->nex_output(tmp_set); NetBus tmp_map (scope, tmp_set.count()); for (unsigned idx = 0 ; idx < tmp_set.count() ; idx += 1) connect(tmp_set[idx], tmp_map.pin(idx)); /* Create also a temporary NetBus to collect the output from the synthesis. */ NetBus tmp_out (scope, tmp_set.count()); bool ok_flag = cur->synth_async(des, scope, tmp_map, tmp_out); flag = flag && ok_flag; if (ok_flag == false) continue; /* Now find the tmp_map pins in the nex_map global map, and use that to direct the connection to the nex_out output bus. Look for the nex_map pin that is linked to the tmp_map.pin(idx) pin, and link that to the tmp_out.pin(idx) output link. */ for (unsigned idx = 0 ; idx < tmp_out.pin_count() ; idx += 1) { unsigned ptr = 0; while (ptr < nex_map.pin_count() && ! nex_map.pin(ptr).is_linked(tmp_map.pin(idx))) ptr += 1; assert(ptr < nex_out.pin_count()); connect(nex_out.pin(ptr), tmp_out.pin(idx)); } } while (cur != last_); return flag; } bool NetCase::synth_async(Design*des, NetScope*scope, const NetBus&nex_map, NetBus&nex_out) { /* Synthesize the select expression. */ NetNet*esig = expr_->synthesize(des, scope, expr_); unsigned sel_width = esig->vector_width(); assert(sel_width > 0); unsigned mux_width = 0; for (unsigned idx = 0 ; idx < nex_out.pin_count() ; idx += 1) mux_width += nex_out.pin(idx).nexus()->vector_width(); /* Collect all the statements into a map of index to statement. The guard expression it evaluated to be the index of the mux value, and the statement is bound to that index. */ unsigned long max_guard_value = 0; mapstatement_map; NetProc*statement_default = 0; for (unsigned item = 0 ; item < nitems_ ; item += 1) { if (items_[item].guard == 0) { statement_default = items_[item].statement; continue; } NetEConst*ge = dynamic_cast(items_[item].guard); assert(ge); verinum gval = ge->value(); unsigned sel_idx = gval.as_ulong(); assert(items_[item].statement); statement_map[sel_idx] = items_[item].statement; if (sel_idx > max_guard_value) max_guard_value = sel_idx; } unsigned mux_size = max_guard_value + 1; NetMux*mux = new NetMux(scope, scope->local_symbol(), mux_width, mux_size, sel_width); des->add_node(mux); /* The select signal is already synthesized. Simply hook it up. */ connect(mux->pin_Sel(), esig->pin(0)); /* For now, assume that the output is only 1 signal. */ assert(nex_out.pin_count() == 1); connect(mux->pin_Result(), nex_out.pin(0)); /* For now, only support logic types. */ ivl_variable_type_t mux_data_type = IVL_VT_LOGIC; /* Forgot to support default statements? */ assert(statement_default == 0); NetNet*isig; for (unsigned idx = 0 ; idx < mux_size ; idx += 1) { NetProc*stmt = statement_map[idx]; if (stmt == 0) { cerr << get_fileline() << ": error: case " << idx << " is not accounted for in asynchronous mux." << endl; des->errors += 1; continue; } isig = new NetNet(scope, scope->local_symbol(), NetNet::TRI, mux_width); isig->local_flag(true); isig->data_type(mux_data_type); connect(mux->pin_Data(idx), isig->pin(0)); NetBus tmp (scope, 1); connect(tmp.pin(0), isig->pin(0)); stmt->synth_async(des, scope, tmp, tmp); } return true; } bool NetCondit::synth_async(Design*des, NetScope*scope, const NetBus&nex_map, NetBus&nex_out) { #if 0 NetNet*ssig = expr_->synthesize(des); assert(ssig); if (if_ == 0) { DEBUG_SYNTH2_EXIT("NetCondit",false) return false; } if (else_ == 0) { cerr << get_line() << ": error: Asynchronous if statement" << " is missing the else clause." << endl; DEBUG_SYNTH2_EXIT("NetCondit",false) return false; } assert(if_ != 0); assert(else_ != 0); NetNet*asig = new NetNet(scope, scope->local_symbol(), NetNet::WIRE, nex_map->pin_count()); asig->local_flag(true); bool flag; flag = if_->synth_async(des, scope, nex_map, asig); if (!flag) { delete asig; DEBUG_SYNTH2_EXIT("NetCondit",false) return false; } NetNet*bsig = new NetNet(scope, scope->local_symbol(), NetNet::WIRE, nex_map->pin_count()); bsig->local_flag(true); flag = else_->synth_async(des, scope, nex_map, bsig); if (!flag) { delete asig; delete bsig; DEBUG_SYNTH2_EXIT("NetCondit",false) return false; } NetMux*mux = new NetMux(scope, scope->local_symbol(), nex_out->vector_width(), 2, 1); connect(mux->pin_Sel(), ssig->pin(0)); connect(mux->pin_Data(1), asig->pin(0)); connect(mux->pin_Data(0), bsig->pin(0)); connect(nex_out->pin(0), mux->pin_Result()); des->add_node(mux); DEBUG_SYNTH2_EXIT("NetCondit",true) return true; #else cerr << get_fileline() << ": sorry: " << "Forgot to implement NetCondit::synth_async" << endl; des->errors += 1; return false; #endif } bool NetEvWait::synth_async(Design*des, NetScope*scope, const NetBus&nex_map, NetBus&nex_out) { bool flag = statement_->synth_async(des, scope, nex_map, nex_out); return flag; } /* * This method is called when the process is shown to be * asynchronous. Figure out the nexus set of outputs from this * process, and pass that to the synth_async method for the statement * of the process. The statement will connect its output to the * nex_out set, using the nex_map as a guide. Starting from the top, * the nex_map is the same as the nex_map. */ bool NetProcTop::synth_async(Design*des) { NexusSet nex_set; statement_->nex_output(nex_set); if (debug_synth2) { cerr << get_fileline() << ": debug: Process has " << nex_set.count() << " outputs." << endl; } NetBus nex_q (scope(), nex_set.count()); for (unsigned idx = 0 ; idx < nex_set.count() ; idx += 1) { connect(nex_set[idx], nex_q.pin(idx)); } bool flag = statement_->synth_async(des, scope(), nex_q, nex_q); return flag; } /* * This method is called when a block is encountered near the surface * of a synchronous always statement. For example, this code will be * invoked for input like this: * * always @(posedge clk...) begin * * * ... * end * * This needs to be split into a DFF bank for each statement, because * the statements may each infer different reset and enable signals. */ bool NetBlock::synth_sync(Design*des, NetScope*scope, NetFF*ff, const NetBus&nex_map, NetBus&nex_out, const svector&events_in) { if (last_ == 0) { return true; } #if 0 bool flag = true; const perm_string tmp1 = perm_string::literal("tmp1"); const perm_string tmp2 = perm_string::literal("tmp2"); /* Keep an accounting of which statement accounts for which bit slice of the FF bank. This is used for error checking. */ NetProc**pin_accounting = new NetProc* [ff->pin_count()]; for (unsigned idx = 0 ; idx < ff->pin_count() ; idx += 1) pin_accounting[idx] = 0; NetProc*cur = last_; do { cur = cur->next_; /* Create a temporary nex_map for the substatement. */ NexusSet tmp_set; cur->nex_output(tmp_set); NetNet*tmp_map = new NetNet(scope, tmp1, NetNet::WIRE, tmp_set.count()); for (unsigned idx = 0 ; idx < tmp_map->pin_count() ; idx += 1) connect(tmp_set[idx], tmp_map->pin(idx)); /* NOTE: After this point, tmp_set should not be used as the various functions I call do a lot of connecting, and the nexa in the tmp_set may get realloced. Use the tmp_map instead. */ /* Create also a temporary net_out to collect the output. The tmp1 and tmp2 map and out sets together are used to collect the outputs from the substatement for the inputs of the FF bank. */ NetNet*tmp_out = new NetNet(scope, tmp2, NetNet::WIRE, tmp_map->pin_count()); verinum tmp_aset = ff->aset_value(); verinum tmp_sset = ff->sset_value(); /* Create a new DFF to handle this part of the begin-end block. Connect this NetFF to the associated pins of the existing wide NetFF device. While I'm at it, also copy the aset_value bits for the new ff device. */ NetFF*ff2 = new NetFF(scope, scope->local_symbol(), tmp_out->pin_count()); des->add_node(ff2); verinum aset_value2 (verinum::V1, ff2->width()); verinum sset_value2 (verinum::V1, ff2->width()); for (unsigned idx = 0 ; idx < ff2->width() ; idx += 1) { unsigned ptr = find_nexus_in_set(nex_map, tmp_map->pin(idx).nexus()); /* Connect Data and Q bits to the new FF. */ connect(ff->pin_Data(ptr), ff2->pin_Data(idx)); connect(ff->pin_Q(ptr), ff2->pin_Q(idx)); /* Copy the asynch set bit to the new device. */ if (ptr < tmp_aset.len()) aset_value2.set(idx, tmp_aset[ptr]); /* Copy the synch set bit to the new device. */ if (ptr < tmp_sset.len()) sset_value2.set(idx, tmp_sset[ptr]); if (pin_accounting[ptr] != 0) { cerr << cur->get_line() << ": error: " << "Synchronous output conflicts with " << pin_accounting[ptr]->get_line() << "." << endl; flag = false; } else { pin_accounting[ptr] = cur; } } if (ff->pin_Aclr().is_linked()) connect(ff->pin_Aclr(), ff2->pin_Aclr()); if (ff->pin_Aset().is_linked()) connect(ff->pin_Aset(), ff2->pin_Aset()); if (ff->pin_Sclr().is_linked()) connect(ff->pin_Sclr(), ff2->pin_Sclr()); if (ff->pin_Sset().is_linked()) connect(ff->pin_Sset(), ff2->pin_Sset()); if (ff->pin_Clock().is_linked()) connect(ff->pin_Clock(), ff2->pin_Clock()); if (ff->pin_Enable().is_linked()) connect(ff->pin_Enable(),ff2->pin_Enable()); /* Remember to store the aset value into the new FF. If this leads to an Aset value of 0 (and Aclr is not otherwise used) then move the Aset input to Aclr. */ if (tmp_aset.len() == ff->width()) { if (aset_value2.is_zero() && ff2->pin_Aset().is_linked() && !ff2->pin_Aclr().is_linked()) { connect(ff2->pin_Aclr(), ff2->pin_Aset()); ff2->pin_Aset().unlink(); } else { ff2->aset_value(aset_value2); } } /* Now go on with the synchronous synthesis for this subset of the statement. The tmp_map is the output nexa that we expect, and the tmp_out is where we want those outputs connected. */ bool ok_flag = cur->synth_sync(des, scope, ff2, tmp_map, tmp_out, events_in); flag = flag && ok_flag; if (ok_flag == false) continue; /* Use the nex_map to link up the output from the substatement to the output of the block as a whole. It is occasionally possible to have outputs beyond the input set, for example when the l-value of an assignment is smaller then the r-value. */ for (unsigned idx = 0 ; idx < tmp_out->pin_count() ; idx += 1) { unsigned ptr = find_nexus_in_set(nex_map, tmp_map->pin(idx).nexus()); if (ptr < nex_out->pin_count()) connect(nex_out->pin(ptr), tmp_out->pin(idx)); } delete tmp_map; delete tmp_out; } while (cur != last_); delete[]pin_accounting; /* Done. The large NetFF is no longer needed, as it has been taken up by the smaller NetFF devices. */ delete ff; return flag; #else cerr << get_fileline() << ": sorry: " << "Forgot to implement NetBlock::synth_sync" << endl; des->errors += 1; return false; #endif } /* * This method handles the case where I find a conditional near the * surface of a synchronous thread. This conditional can be a CE or an * asynchronous set/reset, depending on whether the pin of the * expression is connected to an event, or not. */ bool NetCondit::synth_sync(Design*des, NetScope*scope, NetFF*ff, const NetBus&nex_map, NetBus&nex_out, const svector&events_in) { #if 0 /* First try to turn the condition expression into an asynchronous set/reset. If the condition expression has inputs that are included in the sensitivity list, then it is likely intended as an asynchronous input. */ NexusSet*expr_input = expr_->nex_input(); assert(expr_input); for (unsigned idx = 0 ; idx < events_in.count() ; idx += 1) { NetEvProbe*ev = events_in[idx]; NexusSet pin_set; pin_set.add(ev->pin(0).nexus()); if (! expr_input->contains(pin_set)) continue; /* Ah, this edge is in the sensitivity list for the expression, so we have an asynchronous input. Synthesize the set/reset input expression. */ NetNet*rst = expr_->synthesize(des); assert(rst->pin_count() == 1); /* XXXX I really should find a way to check that the edge used on the reset input is correct. This would involve interpreting the expression that is fed by the reset expression. */ //assert(ev->edge() == NetEvProbe::POSEDGE); /* Synthesize the true clause to figure out what kind of set/reset we have. */ NetNet*asig = new NetNet(scope, scope->local_symbol(), NetNet::WIRE, nex_map->pin_count()); asig->local_flag(true); assert(if_ != 0); bool flag = if_->synth_async(des, scope, nex_map, asig); assert(asig->pin_count() == ff->width()); /* Collect the set/reset value into a verinum. If this turns out to be entirely 0 values, then use the Aclr input. Otherwise, use the Aset input and save the set value. */ verinum tmp (verinum::V0, ff->width()); for (unsigned bit = 0 ; bit < ff->width() ; bit += 1) { assert(asig->pin(bit).nexus()->drivers_constant()); tmp.set(bit, asig->pin(bit).nexus()->driven_value()); } assert(tmp.is_defined()); if (tmp.is_zero()) { connect(ff->pin_Aclr(), rst->pin(0)); } else { connect(ff->pin_Aset(), rst->pin(0)); ff->aset_value(tmp); } delete asig; delete expr_input; assert(events_in.count() == 1); assert(else_ != 0); flag = else_->synth_sync(des, scope, ff, nex_map, nex_out, svector(0)) && flag; DEBUG_SYNTH2_EXIT("NetCondit",flag) return flag; } delete expr_input; /* Detect the case that this is a *synchronous* set/reset. It is not asynchronous because we know the condition is not included in the sensitivity list, but if the if_ case is constant (has no inputs) then we can model this as a synchronous set/reset. This is only synchronous set/reset if there is a true and a false clause, and no inputs. The "no inputs" requirement is met if the assignments are of all constant values. */ assert(if_ != 0); NexusSet*a_set = if_->nex_input(); if ((a_set->count() == 0) && if_ && else_) { NetNet*rst = expr_->synthesize(des); assert(rst->pin_count() == 1); /* Synthesize the true clause to figure out what kind of set/reset we have. */ NetNet*asig = new NetNet(scope, scope->local_symbol(), NetNet::WIRE, nex_map->pin_count()); asig->local_flag(true); bool flag = if_->synth_async(des, scope, nex_map, asig); if (!flag) { /* This path leads nowhere */ delete asig; } else { assert(asig->pin_count() == ff->width()); /* Collect the set/reset value into a verinum. If this turns out to be entirely 0 values, then use the Sclr input. Otherwise, use the Aset input and save the set value. */ verinum tmp (verinum::V0, ff->width()); for (unsigned bit = 0 ; bit < ff->width() ; bit += 1) { assert(asig->pin(bit).nexus()->drivers_constant()); tmp.set(bit, asig->pin(bit).nexus()->driven_value()); } assert(tmp.is_defined()); if (tmp.is_zero()) { connect(ff->pin_Sclr(), rst->pin(0)); } else { connect(ff->pin_Sset(), rst->pin(0)); ff->sset_value(tmp); } delete a_set; assert(else_ != 0); flag = else_->synth_sync(des, scope, ff, nex_map, nex_out, svector(0)) && flag; DEBUG_SYNTH2_EXIT("NetCondit",flag) return flag; } } delete a_set; /* Failed to find an asynchronous set/reset, so any events input are probably in error. */ if (events_in.count() > 0) { cerr << get_line() << ": error: Events are unaccounted" << " for in process synthesis." << endl; des->errors += 1; } /* If this is an if/then/else, then it is likely a combinational if, and I should synthesize it that way. */ if (if_ && else_) { bool flag = synth_async(des, scope, nex_map, nex_out); DEBUG_SYNTH2_EXIT("NetCondit",flag) return flag; } assert(if_); assert(!else_); /* Synthesize the enable expression. */ NetNet*ce = expr_->synthesize(des); assert(ce->pin_count() == 1); /* What's left, is a synchronous CE statement like this: if (expr_) ; The expr_ expression has already been synthesized to the ce net, so we connect it here to the FF. What's left is to synthesize the substatement as a combinational statement. Watch out for the special case that there is already a CE connected to this FF. This can be caused by code like this: if (a) if (b) ; In this case, we are working on the inner IF, so we AND the a and b expressions to make a new CE. */ if (ff->pin_Enable().is_linked()) { NetLogic*ce_and = new NetLogic(scope, scope->local_symbol(), 3, NetLogic::AND, 1); des->add_node(ce_and); connect(ff->pin_Enable(), ce_and->pin(1)); connect(ce->pin(0), ce_and->pin(2)); ff->pin_Enable().unlink(); connect(ff->pin_Enable(), ce_and->pin(0)); NetNet*tmp = new NetNet(scope, scope->local_symbol(), NetNet::IMPLICIT, 1); tmp->local_flag(true); connect(ff->pin_Enable(), tmp->pin(0)); } else { connect(ff->pin_Enable(), ce->pin(0)); } bool flag = if_->synth_sync(des, scope, ff, nex_map, nex_out, events_in); return flag; #else cerr << get_fileline() << ": sorry: " << "Forgot to implement NetCondit::synth_sync" << endl; des->errors += 1; return false; #endif } bool NetEvWait::synth_sync(Design*des, NetScope*scope, NetFF*ff, const NetBus&nex_map, NetBus&nex_out, const svector&events_in) { if (events_in.count() > 0) { cerr << get_fileline() << ": error: Events are unaccounted" << " for in process synthesis." << endl; des->errors += 1; } assert(events_in.count() == 0); /* This can't be other than one unless there are named events, which I cannot synthesize. */ assert(nevents_ == 1); NetEvent*ev = events_[0]; assert(ev->nprobe() >= 1); svectorevents (ev->nprobe() - 1); /* Get the input set from the substatement. This will be used to figure out which of the probes is the clock. */ NexusSet*statement_input = statement_ -> nex_input(); /* Search for a clock input. The clock input is the edge event that is not also an input to the substatement. */ NetEvProbe*pclk = 0; unsigned event_idx = 0; for (unsigned idx = 0 ; idx < ev->nprobe() ; idx += 1) { NetEvProbe*tmp = ev->probe(idx); assert(tmp->pin_count() == 1); NexusSet tmp_nex; tmp_nex .add( tmp->pin(0).nexus() ); if (! statement_input ->contains(tmp_nex)) { if (pclk != 0) { cerr << get_fileline() << ": error: Too many " << "clocks for synchronous logic." << endl; cerr << get_fileline() << ": : Perhaps an" << " asynchronous set/reset is misused?" << endl; des->errors += 1; } pclk = tmp; } else { events[event_idx++] = tmp; } } if (pclk == 0) { cerr << get_fileline() << ": error: None of the edges" << " are valid clock inputs." << endl; cerr << get_fileline() << ": : Perhaps the clock" << " is read by a statement or expression?" << endl; return false; } connect(ff->pin_Clock(), pclk->pin(0)); if (pclk->edge() == NetEvProbe::NEGEDGE) { perm_string polarity = perm_string::literal("Clock:LPM_Polarity"); ff->attribute(polarity, verinum("INVERT")); if (debug_synth2) { cerr << get_fileline() << ": debug: " << "Detected a NEGEDGE clock for the synthesized ff." << endl; } } /* Synthesize the input to the DFF. */ bool flag = statement_->synth_sync(des, scope, ff, nex_map, nex_out, events); return flag; } /* * This method is called for a process that is determined to be * synchronous. Create a NetFF device to hold the output from the * statement, and synthesize that statement in place. */ bool NetProcTop::synth_sync(Design*des) { if (debug_synth2) { cerr << get_fileline() << ": debug: " << "Process is apparently synchronous. Making NetFFs." << endl; } NexusSet nex_set; statement_->nex_output(nex_set); /* Make a model FF that will connect to the first item in the set, and will also take the initial connection of clocks and resets. */ if (debug_synth2) { cerr << get_fileline() << ": debug: " << "Top level making a " << nex_set[0]->vector_width() << "-wide " << "NetFF device." << endl; } NetFF*ff = new NetFF(scope(), scope()->local_symbol(), nex_set[0]->vector_width()); des->add_node(ff); ff->attribute(perm_string::literal("LPM_FFType"), verinum("DFF")); NetBus nex_d (scope(), nex_set.count()); NetBus nex_q (scope(), nex_set.count()); /* The Q of the NetFF devices is connected to the output that we are. The nex_q is a bundle of the outputs. We will also pass the nex_q as a map to the statement's synth_sync method to map it to the correct nex_d pin. */ for (unsigned idx = 0 ; idx < nex_set.count() ; idx += 1) { connect(nex_set[idx], nex_q.pin(idx)); } // Connect the input later. /* Synthesize the input to the DFF. */ bool flag = statement_->synth_sync(des, scope(), ff, nex_q, nex_d, svector()); if (! flag) { delete ff; return false; } NetNet*tmp = nex_d.pin(0).nexus()->pick_any_net(); assert(tmp); tmp = crop_to_width(des, tmp, ff->width()); connect(tmp->pin(0), ff->pin_Data()); connect(nex_q.pin(0), ff->pin_Q()); for (unsigned idx = 1 ; idx < nex_set.count() ; idx += 1) { NetFF*ff2 = new NetFF(scope(), scope()->local_symbol(), nex_set[idx]->vector_width()); des->add_node(ff2); tmp = nex_d.pin(idx).nexus()->pick_any_net(); assert(tmp); tmp = crop_to_width(des, tmp, ff2->width()); connect(nex_q.pin(idx), ff2->pin_Q()); connect(tmp->pin(0), ff2->pin_Data()); connect(ff->pin_Clock(), ff2->pin_Clock()); if (ff->pin_Enable().is_linked()) connect(ff->pin_Enable(), ff2->pin_Enable()); if (ff->pin_Aset().is_linked()) connect(ff->pin_Aset(), ff2->pin_Aset()); if (ff->pin_Aclr().is_linked()) connect(ff->pin_Aclr(), ff2->pin_Aclr()); if (ff->pin_Sset().is_linked()) connect(ff->pin_Sset(), ff2->pin_Sset()); if (ff->pin_Sclr().is_linked()) connect(ff->pin_Sclr(), ff2->pin_Sclr()); } return true; } class synth2_f : public functor_t { public: void process(class Design*, class NetProcTop*); private: }; /* * Look at a process. If it is asynchronous, then synthesize it as an * asynchronous process and delete the process itself for its gates. */ void synth2_f::process(class Design*des, class NetProcTop*top) { if (top->attribute(perm_string::literal("ivl_synthesis_off")).as_ulong() != 0) return; /* If the scope that contains this process as a cell attribute attached to it, then skip synthesis. */ if (top->scope()->attribute(perm_string::literal("ivl_synthesis_cell")).len() > 0) return; if (top->is_synchronous()) do { bool flag = top->synth_sync(des); if (! flag) { cerr << top->get_fileline() << ": error: " << "Unable to synthesize synchronous process." << endl; des->errors += 1; return; } des->delete_process(top); return; } while (0); if (! top->is_asynchronous()) { bool synth_error_flag = false; if (top->attribute(perm_string::literal("ivl_combinational")).as_ulong() != 0) { cerr << top->get_fileline() << ": error: " << "Process is marked combinational," << " but isn't really." << endl; des->errors += 1; synth_error_flag = true; } if (top->attribute(perm_string::literal("ivl_synthesis_on")).as_ulong() != 0) { cerr << top->get_fileline() << ": error: " << "Process is marked for synthesis," << " but I can't do it." << endl; des->errors += 1; synth_error_flag = true; } if (! synth_error_flag) cerr << top->get_fileline() << ": warning: " << "Process not synthesized." << endl; return; } if (! top->synth_async(des)) { cerr << top->get_fileline() << ": internal error: " << "is_asynchronous does not match " << "sync_async results." << endl; des->errors += 1; return; } des->delete_process(top); } void synth2(Design*des) { synth2_f synth_obj; des->functor(&synth_obj); }