/* * Copyright (c) 1999-2009 Stephen Williams (steve@icarus.com) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ # include "config.h" # include # include "PDelays.h" # include "PExpr.h" # include "verinum.h" # include "netmisc.h" bool dly_used_no_timescale = false; bool dly_used_timescale = false; bool display_ts_dly_warning = true; PDelays::PDelays() { delete_flag_ = true; for (unsigned idx = 0 ; idx < 3 ; idx += 1) delay_[idx] = 0; } PDelays::~PDelays() { if (delete_flag_) { for (unsigned idx = 0 ; idx < 3 ; idx += 1) delete delay_[idx]; } } void PDelays::set_delay(PExpr*del) { assert(del); assert(delay_[0] == 0); delay_[0] = del; delete_flag_ = true; } void PDelays::set_delays(const svector*del, bool df) { assert(del); assert(del->count() <= 3); for (unsigned idx = 0 ; idx < del->count() ; idx += 1) delay_[idx] = (*del)[idx]; delete_flag_ = df; } static NetExpr*calculate_val(Design*des, NetScope*scope, PExpr*expr) { ivl_variable_type_t tmp_type = IVL_VT_NO_TYPE; bool tmp_flag = false; expr->test_width(des, scope, 0, 0, tmp_type, tmp_flag); NetExpr*dex = expr->elaborate_expr(des, scope, -1, false); eval_expr(dex); /* Print a warning if we find default and `timescale based * delays in the design, since this is likely an error. */ if (scope->time_from_timescale()) dly_used_timescale = true; else dly_used_no_timescale = true; if (display_ts_dly_warning && dly_used_no_timescale && dly_used_timescale) { cerr << "warning: Found both default and " "`timescale based delays. Use" << endl; cerr << " -Wtimescale to find the " "module(s) with no `timescale." << endl; display_ts_dly_warning = false; } /* If the delay expression is a real constant or vector constant, then evaluate it, scale it to the local time units, and return an adjusted value. */ if (NetECReal*tmp = dynamic_cast(dex)) { verireal fn = tmp->value(); int shift = scope->time_unit() - des->get_precision(); int64_t delay = fn.as_long64(shift); if (delay < 0) delay = 0; delete tmp; NetEConst*tmp2 = new NetEConst(verinum(delay)); tmp2->set_line(*expr); return tmp2; } if (NetEConst*tmp = dynamic_cast(dex)) { verinum fn = tmp->value(); uint64_t delay = des->scale_to_precision(fn.as_ulong64(), scope); delete tmp; NetEConst*tmp2 = new NetEConst(verinum(delay)); tmp2->set_line(*expr); return tmp2; } /* Oops, cannot evaluate down to a constant. */ return dex; } static NetExpr* make_delay_nets(Design*des, NetScope*scope, NetExpr*expr) { if (dynamic_cast (expr)) return expr; if (dynamic_cast (expr)) return expr; NetNet*sig = expr->synthesize(des, scope, expr); if (sig == 0) { cerr << expr->get_fileline() << ": error: Expression " << *expr << " is not suitable for delay expression." << endl; return 0; } expr = new NetESignal(sig); return expr; } static NetExpr* calc_decay_time(NetExpr *rise, NetExpr *fall) { NetEConst *c_rise = dynamic_cast(rise); NetEConst *c_fall = dynamic_cast(fall); if (c_rise && c_fall) { if (c_rise->value() < c_fall->value()) return rise; else return fall; } cerr << fall->get_fileline() << ": sorry: can not calculate the " << "decay time from " << *rise << " and " << *fall << endl; return 0; } void PDelays::eval_delays(Design*des, NetScope*scope, NetExpr*&rise_time, NetExpr*&fall_time, NetExpr*&decay_time, bool as_nets_flag) const { assert(scope); if (delay_[0]) { rise_time = calculate_val(des, scope, delay_[0]); if (as_nets_flag) rise_time = make_delay_nets(des, scope, rise_time); if (delay_[1]) { fall_time = calculate_val(des, scope, delay_[1]); if (as_nets_flag) fall_time = make_delay_nets(des, scope, fall_time); if (delay_[2]) { decay_time = calculate_val(des, scope, delay_[2]); if (as_nets_flag) decay_time = make_delay_nets(des, scope, decay_time); } else { // If this is zero then we need to do the min() // at run time. decay_time = calc_decay_time(rise_time, fall_time); } } else { assert(delay_[2] == 0); fall_time = rise_time; decay_time = rise_time; } } else { rise_time = 0; fall_time = 0; decay_time = 0; } }