/* * Copyright (c) 2011-2025 Stephen Williams (steve@icarus.com) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ # include "vpi_config.h" # include "vpi_user.h" # include # include # include "ivl_alloc.h" # include "sys_priv.h" /* * The $ivlh_attribute_event implements the VHDL 'event * attribute. It does this by monitoring value-change events on the * operand, and noting the time. If the $ivlh_attribute_event is * called at the same simulation time as a value-change, then the * function returns logic true. Otherwise it returns false. * * $ivlh_{rising,falling}_edge implement the VHDL rising_edge() and * falling_edge() system functions. */ struct monitor_data { struct t_vpi_time last_event; struct t_vpi_value last_value; }; static struct monitor_data **mdata = 0; static unsigned mdata_count = 0; typedef enum { EVENT = 0, RISING_EDGE = 1, FALLING_EDGE = 2 } event_type_t; static const char* attr_func_names[] = { "$ivlh_attribute_event", "$ivlh_rising_edge", "$ivlh_falling_edge" }; typedef enum { SHIFT_LEFT = 0, SHIFT_RIGHT = 1, } shift_type_t; static const char* shift_func_names[] = { "$ivlh_shift_left", "$ivlh_shift_right", }; /* To keep valgrind happy free the allocated memory. */ static PLI_INT32 cleanup_mdata(p_cb_data cause) { unsigned idx; (void) cause; /* Parameter is not used. */ for (idx= 0; idx < mdata_count; idx += 1) { free(mdata[idx]); } free(mdata); mdata = 0; mdata_count = 0; return 0; } static PLI_INT32 monitor_events(struct t_cb_data*cb) { struct monitor_data*mon = (struct monitor_data*)(cb->user_data); assert(cb->time); assert(cb->time->type == vpiSimTime); mon->last_event = *(cb->time); mon->last_value = *(cb->value); return 0; } static PLI_INT32 ivlh_attribute_event_compiletf(ICARUS_VPI_CONST PLI_BYTE8*data) { event_type_t type = (event_type_t)(uintptr_t)data; vpiHandle sys = vpi_handle(vpiSysTfCall, 0); vpiHandle argv = vpi_iterate(vpiArgument, sys); vpiHandle arg; struct monitor_data*mon; struct t_cb_data cb; struct t_vpi_time tb; struct t_vpi_value vb; /* Check that there are arguments. */ if (argv == 0) { vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, sys), (int)vpi_get(vpiLineNo, sys)); vpi_printf("(compiler error) %s requires a single argument.\n", attr_func_names[type]); vpip_set_return_value(1); vpi_control(vpiFinish, 1); return 0; } /* Icarus either returns 0 above or has one argument. */ arg = vpi_scan(argv); assert(arg); mon = malloc(sizeof(struct monitor_data)); /* Add this to the list of data. */ mdata_count += 1; mdata = (struct monitor_data **) realloc(mdata, sizeof(struct monitor_data **) * mdata_count); mdata[mdata_count-1] = mon; tb.type = vpiSimTime; vb.format = vpiScalarVal; cb.reason = cbValueChange; cb.cb_rtn = monitor_events; cb.obj = arg; cb.time = &tb; cb.value = &vb; cb.user_data = (char*) (mon); vpi_register_cb(&cb); vpi_put_userdata(sys, mon); /* Check that there is no more than one argument. */ arg = vpi_scan(argv); if (arg != 0) { vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, sys), (int)vpi_get(vpiLineNo, sys)); vpi_printf("(compiler error) %s only takes a single argument.\n", attr_func_names[type]); vpi_free_object(argv); vpip_set_return_value(1); vpi_control(vpiFinish, 1); } return 0; } static PLI_INT32 ivlh_attribute_event_calltf(ICARUS_VPI_CONST PLI_BYTE8*data) { event_type_t type = (event_type_t)(uintptr_t)data; vpiHandle sys = vpi_handle(vpiSysTfCall, 0); struct t_vpi_value rval; struct monitor_data*mon; rval.format = vpiScalarVal; mon = (struct monitor_data*) (vpi_get_userdata(sys)); if (mon->last_event.type == 0) { rval.value.scalar = vpi0; } else { struct t_vpi_time tnow; tnow.type = vpiSimTime; vpi_get_time(0, &tnow); rval.value.scalar = vpi1; // Detect if change occurred in this moment if (mon->last_event.high != tnow.high) rval.value.scalar = vpi0; if (mon->last_event.low != tnow.low) rval.value.scalar = vpi0; // Determine the edge, if required if (type == RISING_EDGE && mon->last_value.value.scalar != vpi1) rval.value.scalar = vpi0; else if (type == FALLING_EDGE && mon->last_value.value.scalar != vpi0) rval.value.scalar = vpi0; } vpi_put_value(sys, &rval, 0, vpiNoDelay); return 0; } static PLI_INT32 ivlh_attribute_event_sizetf(ICARUS_VPI_CONST PLI_BYTE8*type) { (void) type; /* Parameter is not used. */ return 1; } static PLI_INT32 ivlh_shift_calltf(ICARUS_VPI_CONST PLI_BYTE8*data) { shift_type_t shift_type = (shift_type_t)(uintptr_t)data; vpiHandle callh = vpi_handle(vpiSysTfCall, 0); vpiHandle argv = vpi_iterate(vpiArgument, callh); vpiHandle argh = vpi_scan(argv); vpiHandle counth = vpi_scan(argv); s_vpi_value val; PLI_INT32 count; vpi_free_object(argv); val.format = vpiIntVal; vpi_get_value(counth, &val); count = val.value.integer; val.format = vpiIntVal; vpi_get_value(argh, &val); if(shift_type == SHIFT_LEFT) val.value.integer <<= count; else if(shift_type == SHIFT_RIGHT) val.value.integer >>= count; else assert(0); vpi_put_value(callh, &val, 0, vpiNoDelay); return 0; } static PLI_INT32 ivlh_shift_sizetf(ICARUS_VPI_CONST PLI_BYTE8*type) { (void) type; /* Parameter is not used. */ return 32; } static void vhdl_register(void) { s_vpi_systf_data tf_data; s_cb_data cb; vpiHandle res; /* Event attribute functions */ tf_data.type = vpiSysFunc; tf_data.sysfunctype = vpiSizedFunc; tf_data.calltf = ivlh_attribute_event_calltf; tf_data.compiletf = ivlh_attribute_event_compiletf; tf_data.sizetf = ivlh_attribute_event_sizetf; tf_data.tfname = attr_func_names[EVENT]; tf_data.user_data = (PLI_BYTE8*) EVENT; res = vpi_register_systf(&tf_data); vpip_make_systf_system_defined(res); tf_data.tfname = attr_func_names[RISING_EDGE]; tf_data.user_data = (PLI_BYTE8*) RISING_EDGE; res = vpi_register_systf(&tf_data); vpip_make_systf_system_defined(res); tf_data.tfname = attr_func_names[FALLING_EDGE]; tf_data.user_data = (PLI_BYTE8*) FALLING_EDGE; res = vpi_register_systf(&tf_data); vpip_make_systf_system_defined(res); /* Shift functions */ tf_data.type = vpiSysFunc; tf_data.sysfunctype = vpiSizedFunc; tf_data.calltf = ivlh_shift_calltf; tf_data.compiletf = sys_two_numeric_args_compiletf; tf_data.sizetf = ivlh_shift_sizetf; tf_data.tfname = shift_func_names[SHIFT_LEFT]; tf_data.user_data = (PLI_BYTE8*) SHIFT_LEFT; res = vpi_register_systf(&tf_data); vpip_make_systf_system_defined(res); tf_data.tfname = shift_func_names[SHIFT_RIGHT]; tf_data.user_data = (PLI_BYTE8*) SHIFT_RIGHT; res = vpi_register_systf(&tf_data); vpip_make_systf_system_defined(res); /* Create a callback to clear the monitor data memory when the * simulator finishes. */ cb.time = NULL; cb.reason = cbEndOfSimulation; cb.cb_rtn = cleanup_mdata; cb.user_data = NULL; cb.obj = NULL; vpi_register_cb(&cb); } void (*vlog_startup_routines[])(void) = { vhdl_register, 0 };