/* * Copyright (c) 2000-2008 Stephen Williams (steve@icarus.com) * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ # include "config.h" # include # include # include // sprintf() # include "compiler.h" # include "t-dll.h" # include "netmisc.h" #ifdef HAVE_MALLOC_H # include #endif # include # include "ivl_assert.h" struct dll_target dll_target_obj; #if defined(__WIN32__) inline ivl_dll_t ivl_dlopen(const char *name) { ivl_dll_t res = (ivl_dll_t) LoadLibrary(name); return res; } inline void * ivl_dlsym(ivl_dll_t dll, const char *nm) { FARPROC sym; return (void*)GetProcAddress((HMODULE)dll, nm); } inline void ivl_dlclose(ivl_dll_t dll) { FreeLibrary((HMODULE)dll); } const char *dlerror(void) { static char msg[256]; unsigned long err = GetLastError(); FormatMessage( FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), // Default language (LPTSTR) &msg, sizeof(msg) - 1, NULL ); return msg; } #elif defined(HAVE_DLFCN_H) inline ivl_dll_t ivl_dlopen(const char*name) { return dlopen(name,RTLD_LAZY); } inline void* ivl_dlsym(ivl_dll_t dll, const char*nm) { void*sym = dlsym(dll, nm); /* Not found? try without the leading _ */ if (sym == 0 && nm[0] == '_') sym = dlsym(dll, nm+1); return sym; } inline void ivl_dlclose(ivl_dll_t dll) { dlclose(dll); } #elif defined(HAVE_DL_H) inline ivl_dll_t ivl_dlopen(const char*name) { return shl_load(name, BIND_IMMEDIATE, 0); } inline void* ivl_dlsym(ivl_dll_t dll, const char*nm) { void*sym; int rc = shl_findsym(&dll, nm, TYPE_PROCEDURE, &sym); return (rc == 0) ? sym : 0; } inline void ivl_dlclose(ivl_dll_t dll) { shl_unload(dll); } inline const char*dlerror(void) { return strerror( errno ); } #endif /* * The custom new operator for the ivl_nexus_s type allows us to * allocate nexus objects in blocks. There are generally lots of them * permanently allocated, and allocating them in blocks reduces the * allocation overhead. */ static struct ivl_nexus_s * nexus_pool_ptr = 0; static int nexus_pool_remaining = 0; static const size_t NEXUS_POOL_SIZE = 4096; void* ivl_nexus_s::operator new(size_t s) { assert(s == sizeof(struct ivl_nexus_s)); if (nexus_pool_remaining <= 0) { nexus_pool_ptr = new struct ivl_nexus_s[NEXUS_POOL_SIZE]; nexus_pool_remaining = NEXUS_POOL_SIZE; } struct ivl_nexus_s*tmp = nexus_pool_ptr; nexus_pool_ptr += 1; nexus_pool_remaining -= 1; return tmp; } inline static const char *basename(ivl_scope_t scope, const char *inst) { inst += strlen(ivl_scope_name(scope)); assert(*inst == '.'); return inst+1; } static perm_string make_scope_name(const hname_t&name) { if (! name.has_number()) return name.peek_name(); char buf[1024]; snprintf(buf, sizeof buf, "%s[%d]", name.peek_name().str(), name.peek_number()); return lex_strings.make(buf); } static void drive_from_link(const Link&lnk, ivl_drive_t&drv0, ivl_drive_t&drv1) { switch (lnk.drive0()) { case Link::HIGHZ: drv0 = IVL_DR_HiZ; break; case Link::WEAK: drv0 = IVL_DR_WEAK; break; case Link::PULL: drv0 = IVL_DR_PULL; break; case Link::STRONG: drv0 = IVL_DR_STRONG; break; case Link::SUPPLY: drv0 = IVL_DR_SUPPLY; break; } switch (lnk.drive1()) { case Link::HIGHZ: drv1 = IVL_DR_HiZ; break; case Link::WEAK: drv1 = IVL_DR_WEAK; break; case Link::PULL: drv1 = IVL_DR_PULL; break; case Link::STRONG: drv1 = IVL_DR_STRONG; break; case Link::SUPPLY: drv1 = IVL_DR_SUPPLY; break; } } ivl_attribute_s* dll_target::fill_in_attributes(const Attrib*net) { ivl_attribute_s*attr; unsigned nattr = net->attr_cnt(); if (nattr == 0) return 0; attr = new struct ivl_attribute_s[nattr]; for (unsigned idx = 0 ; idx < nattr ; idx += 1) { verinum tmp = net->attr_value(idx); attr[idx].key = net->attr_key(idx); if (tmp.is_string()) { attr[idx].type = IVL_ATT_STR; attr[idx].val.str = strings_.add(tmp.as_string().c_str()); } else if (tmp == verinum()) { attr[idx].type = IVL_ATT_VOID; } else { attr[idx].type = IVL_ATT_NUM; attr[idx].val.num = tmp.as_long(); } } return attr; } /* * This function locates an ivl_scope_t object that matches the * NetScope object. The search works by looking for the parent scope, * then scanning the parent scope for the NetScope object. */ static ivl_scope_t find_scope_from_root(ivl_scope_t root, const NetScope*cur) { ivl_scope_t parent, tmp; perm_string cur_name = make_scope_name(cur->fullname()); if (const NetScope*par = cur->parent()) { parent = find_scope_from_root(root, par); if (parent == 0) return 0; for (tmp = parent->child_ ; tmp ; tmp = tmp->sibling_) if (strcmp(tmp->name_, cur_name) == 0) return tmp; } else { if (strcmp(root->name_, cur_name) == 0) return root; } return 0; } ivl_scope_t dll_target::find_scope(ivl_design_s &des, const NetScope*cur) { assert(cur); ivl_scope_t scope = 0; for (unsigned i = 0; i < des.nroots_ && scope == 0; i += 1) { assert(des.roots_[i]); scope = find_scope_from_root(des.roots_[i], cur); } return scope; } ivl_scope_t dll_target::lookup_scope_(const NetScope*cur) { return find_scope(des_, cur); } /* * This is a convenience function to locate an ivl_signal_t object * given the NetESignal that has the signal name. */ ivl_signal_t dll_target::find_signal(ivl_design_s &des, const NetNet*net) { ivl_scope_t scope = find_scope(des, net->scope()); assert(scope); perm_string nname = net->name(); for (unsigned idx = 0 ; idx < scope->nsigs_ ; idx += 1) { if (strcmp(scope->sigs_[idx]->name_, nname) == 0) return scope->sigs_[idx]; } assert(0); return 0; } static ivl_nexus_t nexus_sig_make(ivl_signal_t net, unsigned pin) { ivl_nexus_t tmp = new struct ivl_nexus_s; tmp->private_data = 0; tmp->nptr_ = 1; tmp->ptrs_ = (struct ivl_nexus_ptr_s*) malloc(sizeof(struct ivl_nexus_ptr_s)); tmp->ptrs_[0].pin_ = pin; tmp->ptrs_[0].type_ = __NEXUS_PTR_SIG; tmp->ptrs_[0].l.sig = net; ivl_drive_t drive = IVL_DR_HiZ; switch (ivl_signal_type(net)) { case IVL_SIT_REG: drive = IVL_DR_STRONG; break; default: break; } tmp->ptrs_[0].drive0 = drive; tmp->ptrs_[0].drive1 = drive; return tmp; } static void nexus_sig_add(ivl_nexus_t nex, ivl_signal_t net, unsigned pin) { unsigned top = nex->nptr_ + 1; nex->ptrs_ = (struct ivl_nexus_ptr_s*) realloc(nex->ptrs_, top * sizeof(struct ivl_nexus_ptr_s)); nex->nptr_ = top; ivl_drive_t drive = IVL_DR_HiZ; switch (ivl_signal_type(net)) { case IVL_SIT_REG: drive = IVL_DR_STRONG; break; default: break; } nex->ptrs_[top-1].type_= __NEXUS_PTR_SIG; nex->ptrs_[top-1].drive0 = drive; nex->ptrs_[top-1].drive1 = drive; nex->ptrs_[top-1].pin_ = pin; nex->ptrs_[top-1].l.sig= net; } /* * Add the pin of the logic object to the nexus, and return the nexus * pointer used for the pin. * * NOTE: This pointer is only valid until another pin is added to the * nexus. */ static ivl_nexus_ptr_t nexus_log_add(ivl_nexus_t nex, ivl_net_logic_t net, unsigned pin) { unsigned top = nex->nptr_ + 1; nex->ptrs_ = (struct ivl_nexus_ptr_s*) realloc(nex->ptrs_, top * sizeof(struct ivl_nexus_ptr_s)); nex->nptr_ = top; nex->ptrs_[top-1].type_= __NEXUS_PTR_LOG; nex->ptrs_[top-1].drive0 = (pin == 0)? IVL_DR_STRONG : IVL_DR_HiZ; nex->ptrs_[top-1].drive1 = (pin == 0)? IVL_DR_STRONG : IVL_DR_HiZ; nex->ptrs_[top-1].pin_ = pin; nex->ptrs_[top-1].l.log= net; return nex->ptrs_ + top - 1; } static void nexus_con_add(ivl_nexus_t nex, ivl_net_const_t net, unsigned pin, ivl_drive_t drive0, ivl_drive_t drive1) { unsigned top = nex->nptr_ + 1; nex->ptrs_ = (struct ivl_nexus_ptr_s*) realloc(nex->ptrs_, top * sizeof(struct ivl_nexus_ptr_s)); nex->nptr_ = top; nex->ptrs_[top-1].type_= __NEXUS_PTR_CON; nex->ptrs_[top-1].drive0 = drive0; nex->ptrs_[top-1].drive1 = drive1; nex->ptrs_[top-1].pin_ = pin; nex->ptrs_[top-1].l.con= net; } static void nexus_lpm_add(ivl_nexus_t nex, ivl_lpm_t net, unsigned pin, ivl_drive_t drive0, ivl_drive_t drive1) { unsigned top = nex->nptr_ + 1; nex->ptrs_ = (struct ivl_nexus_ptr_s*) realloc(nex->ptrs_, top * sizeof(struct ivl_nexus_ptr_s)); nex->nptr_ = top; nex->ptrs_[top-1].type_= __NEXUS_PTR_LPM; nex->ptrs_[top-1].drive0 = drive0; nex->ptrs_[top-1].drive1 = drive0; nex->ptrs_[top-1].pin_ = pin; nex->ptrs_[top-1].l.lpm= net; } static void nexus_switch_add(ivl_nexus_t nex, ivl_switch_t net, unsigned pin) { unsigned top = nex->nptr_ + 1; nex->ptrs_ = (struct ivl_nexus_ptr_s*) realloc(nex->ptrs_, top*sizeof(struct ivl_nexus_ptr_s)); nex->nptr_ = top; nex->ptrs_[top-1].type_= __NEXUS_PTR_SWI; nex->ptrs_[top-1].drive0 = IVL_DR_HiZ; nex->ptrs_[top-1].drive1 = IVL_DR_HiZ; nex->ptrs_[top-1].pin_ = pin; nex->ptrs_[top-1].l.swi= net; } void scope_add_logic(ivl_scope_t scope, ivl_net_logic_t net) { if (scope->nlog_ == 0) { scope->nlog_ = 1; scope->log_ = (ivl_net_logic_t*)malloc(sizeof(ivl_net_logic_t)); scope->log_[0] = net; } else { scope->nlog_ += 1; scope->log_ = (ivl_net_logic_t*) realloc(scope->log_, scope->nlog_*sizeof(ivl_net_logic_t)); scope->log_[scope->nlog_-1] = net; } } void scope_add_event(ivl_scope_t scope, ivl_event_t net) { if (scope->nevent_ == 0) { scope->nevent_ = 1; scope->event_ = (ivl_event_t*)malloc(sizeof(ivl_event_t)); scope->event_[0] = net; } else { scope->nevent_ += 1; scope->event_ = (ivl_event_t*) realloc(scope->event_, scope->nevent_*sizeof(ivl_event_t)); scope->event_[scope->nevent_-1] = net; } } static void scope_add_lpm(ivl_scope_t scope, ivl_lpm_t net) { if (scope->nlpm_ == 0) { assert(scope->lpm_ == 0); scope->nlpm_ = 1; scope->lpm_ = (ivl_lpm_t*)malloc(sizeof(ivl_lpm_t)); scope->lpm_[0] = net; } else { assert(scope->lpm_); scope->nlpm_ += 1; scope->lpm_ = (ivl_lpm_t*) realloc(scope->lpm_, scope->nlpm_*sizeof(ivl_lpm_t)); scope->lpm_[scope->nlpm_-1] = net; } } static void scope_add_switch(ivl_scope_t scope, ivl_switch_t net) { scope->switches.push_back(net); } ivl_parameter_t dll_target::scope_find_param(ivl_scope_t scope, const char*name) { unsigned idx = 0; while (idx < scope->nparam_) { if (strcmp(name, scope->param_[idx].basename) == 0) return scope->param_ + idx; idx += 1; } return 0; } /* * This method scans the parameters of the scope, and makes * ivl_parameter_t objects. This involves saving the name and scanning * the expression value. */ void dll_target::make_scope_parameters(ivl_scope_t scop, const NetScope*net) { scop->nparam_ = net->parameters.size() + net->localparams.size(); if (scop->nparam_ == 0) { scop->param_ = 0; return; } scop->param_ = new struct ivl_parameter_s [scop->nparam_]; unsigned idx = 0; typedef map::const_iterator pit_t; for (pit_t cur_pit = net->parameters.begin() ; cur_pit != net->parameters.end() ; cur_pit ++) { assert(idx < scop->nparam_); ivl_parameter_t cur_par = scop->param_ + idx; cur_par->basename = (*cur_pit).first; cur_par->scope = scop; cur_par->file = (*cur_pit).second.get_file(); cur_par->lineno = (*cur_pit).second.get_lineno(); NetExpr*etmp = (*cur_pit).second.expr; make_scope_param_expr(cur_par, etmp); idx += 1; } for (pit_t cur_pit = net->localparams.begin() ; cur_pit != net->localparams.end() ; cur_pit ++) { assert(idx < scop->nparam_); ivl_parameter_t cur_par = scop->param_ + idx; cur_par->basename = (*cur_pit).first; cur_par->scope = scop; cur_par->file = (*cur_pit).second.get_file(); cur_par->lineno = (*cur_pit).second.get_lineno(); NetExpr*etmp = (*cur_pit).second.expr; make_scope_param_expr(cur_par, etmp); idx += 1; } } void dll_target::make_scope_param_expr(ivl_parameter_t cur_par, NetExpr*etmp) { if (const NetEConst*e = dynamic_cast(etmp)) { expr_const(e); assert(expr_); switch (expr_->type_) { case IVL_EX_STRING: expr_->u_.string_.parameter = cur_par; break; case IVL_EX_NUMBER: expr_->u_.number_.parameter = cur_par; break; default: assert(0); } } else if (const NetECReal*er = dynamic_cast(etmp)) { expr_creal(er); assert(expr_); assert(expr_->type_ == IVL_EX_REALNUM); expr_->u_.real_.parameter = cur_par; } if (expr_ == 0) { cerr << etmp->get_fileline() << ": internal error: " << "Parameter expression not reduced to constant? " << *etmp << endl; } ivl_assert(*etmp, expr_); cur_par->value = expr_; expr_ = 0; } void dll_target::add_root(ivl_design_s &des__, const NetScope *s) { ivl_scope_t root_ = new struct ivl_scope_s; perm_string name = s->basename(); root_->name_ = name; FILE_NAME(root_, s); root_->child_ = 0; root_->sibling_ = 0; root_->parent = 0; root_->nsigs_ = 0; root_->sigs_ = 0; root_->nlog_ = 0; root_->log_ = 0; root_->nevent_ = 0; root_->event_ = 0; root_->nlpm_ = 0; root_->lpm_ = 0; root_->def = 0; make_scope_parameters(root_, s); root_->type_ = IVL_SCT_MODULE; root_->tname_ = root_->name_; root_->time_precision = s->time_precision(); root_->time_units = s->time_unit(); root_->nattr = s->attr_cnt(); root_->attr = fill_in_attributes(s); root_->is_auto = 0; des__.nroots_++; if (des__.roots_) des__.roots_ = (ivl_scope_t *)realloc(des__.roots_, des__.nroots_ * sizeof(ivl_scope_t)); else des__.roots_ = (ivl_scope_t *)malloc(des__.nroots_ * sizeof(ivl_scope_t)); des__.roots_[des__.nroots_ - 1] = root_; } bool dll_target::start_design(const Design*des) { list root_scopes; const char*dll_path_ = des->get_flag("DLL"); dll_ = ivl_dlopen(dll_path_); if ((dll_ == 0) && (dll_path_[0] != '/')) { size_t len = strlen(basedir) + 1 + strlen(dll_path_) + 1; char*tmp = new char[len]; sprintf(tmp, "%s/%s", basedir, dll_path_); dll_ = ivl_dlopen(tmp); delete[]tmp; } if (dll_ == 0) { cerr << "error: " << dll_path_ << " failed to load." << endl; cerr << dll_path_ << ": " << dlerror() << endl; return false; } stmt_cur_ = 0; // Initialize the design object. des_.self = des; des_.time_precision = des->get_precision(); des_.nroots_ = 0; des_.roots_ = NULL; root_scopes = des->find_root_scopes(); for (list::const_iterator scop = root_scopes.begin(); scop != root_scopes.end(); scop++) add_root(des_, *scop); des_.consts = (ivl_net_const_t*) malloc(sizeof(ivl_net_const_t)); des_.nconsts = 0; target_ = (target_design_f)ivl_dlsym(dll_, LU "target_design" TU); if (target_ == 0) { cerr << dll_path_ << ": error: target_design entry " "point is missing." << endl; return false; } return true; } /* * Here ivl is telling us that the design is scanned completely, and * here is where we call the API to process the constructed design. */ int dll_target::end_design(const Design*) { if (verbose_flag) { cout << " ... invoking target_design" << endl; } int rc = (target_)(&des_); ivl_dlclose(dll_); return rc; } void dll_target::switch_attributes(struct ivl_switch_s *obj, const NetNode*net) { obj->nattr = net->attr_cnt(); obj->attr = fill_in_attributes(net); } void dll_target::logic_attributes(struct ivl_net_logic_s *obj, const NetNode*net) { obj->nattr = net->attr_cnt(); obj->attr = fill_in_attributes(net); } void dll_target::make_logic_delays_(struct ivl_net_logic_s*obj, const NetObj*net) { obj->delay[0] = 0; obj->delay[1] = 0; obj->delay[2] = 0; /* Translate delay expressions to ivl_target form. Try to preserve pointer equality, not as a rule but to save on expression trees. */ if (net->rise_time()) { expr_ = 0; net->rise_time()->expr_scan(this); obj->delay[0] = expr_; expr_ = 0; } if (net->fall_time()) { if (net->fall_time() == net->rise_time()) { obj->delay[1] = obj->delay[0]; } else { expr_ = 0; net->fall_time()->expr_scan(this); obj->delay[1] = expr_; expr_ = 0; } } if (net->decay_time()) { if (net->decay_time() == net->rise_time()) { obj->delay[2] = obj->delay[0]; } else { expr_ = 0; net->decay_time()->expr_scan(this); obj->delay[2] = expr_; expr_ = 0; } } } void dll_target::make_lpm_delays_(struct ivl_lpm_s*obj, const NetObj*net) { obj->delay[0] = 0; obj->delay[1] = 0; obj->delay[2] = 0; /* Translate delay expressions to ivl_target form. Try to preserve pointer equality, not as a rule but to save on expression trees. */ if (net->rise_time()) { expr_ = 0; net->rise_time()->expr_scan(this); obj->delay[0] = expr_; expr_ = 0; } if (net->fall_time()) { if (net->fall_time() == net->rise_time()) { obj->delay[1] = obj->delay[0]; } else { expr_ = 0; net->fall_time()->expr_scan(this); obj->delay[1] = expr_; expr_ = 0; } } if (net->decay_time()) { if (net->decay_time() == net->rise_time()) { obj->delay[2] = obj->delay[0]; } else { expr_ = 0; net->decay_time()->expr_scan(this); obj->delay[2] = expr_; expr_ = 0; } } } void dll_target::make_const_delays_(struct ivl_net_const_s*obj, const NetObj*net) { obj->delay[0] = 0; obj->delay[1] = 0; obj->delay[2] = 0; /* Translate delay expressions to ivl_target form. Try to preserve pointer equality, not as a rule but to save on expression trees. */ if (net->rise_time()) { expr_ = 0; net->rise_time()->expr_scan(this); obj->delay[0] = expr_; expr_ = 0; } if (net->fall_time()) { if (net->fall_time() == net->rise_time()) { obj->delay[1] = obj->delay[0]; } else { expr_ = 0; net->fall_time()->expr_scan(this); obj->delay[1] = expr_; expr_ = 0; } } if (net->decay_time()) { if (net->decay_time() == net->rise_time()) { obj->delay[2] = obj->delay[0]; } else { expr_ = 0; net->decay_time()->expr_scan(this); obj->delay[2] = expr_; expr_ = 0; } } } /* * Add a bufz object to the scope that contains it. * * Note that in the ivl_target API a BUFZ device is a special kind of * ivl_net_logic_t device, so create an ivl_net_logic_t cookie to * handle it. */ bool dll_target::bufz(const NetBUFZ*net) { struct ivl_net_logic_s *obj = new struct ivl_net_logic_s; assert(net->pin_count() == 2); obj->type_ = IVL_LO_BUFZ; obj->width_= net->width(); obj->npins_= 2; obj->pins_ = new ivl_nexus_t[2]; /* Get the ivl_nexus_t objects connected to the two pins. (We know a priori that the ivl_nexus_t objects have been allocated, because the signals have been scanned before me. This saves me the trouble of allocating them.) */ assert(net->pin(0).nexus()->t_cookie()); obj->pins_[0] = net->pin(0).nexus()->t_cookie(); ivl_nexus_ptr_t out_ptr = nexus_log_add(obj->pins_[0], obj, 0); switch (net->pin(0).drive0()) { case Link::HIGHZ: out_ptr->drive0 = IVL_DR_HiZ; break; case Link::WEAK: out_ptr->drive0 = IVL_DR_WEAK; break; case Link::PULL: out_ptr->drive0 = IVL_DR_PULL; break; case Link::STRONG: out_ptr->drive0 = IVL_DR_STRONG; break; case Link::SUPPLY: out_ptr->drive0 = IVL_DR_SUPPLY; break; } switch (net->pin(0).drive1()) { case Link::HIGHZ: out_ptr->drive1 = IVL_DR_HiZ; break; case Link::WEAK: out_ptr->drive1 = IVL_DR_WEAK; break; case Link::PULL: out_ptr->drive1 = IVL_DR_PULL; break; case Link::STRONG: out_ptr->drive1 = IVL_DR_STRONG; break; case Link::SUPPLY: out_ptr->drive1 = IVL_DR_SUPPLY; break; } assert(net->pin(1).nexus()->t_cookie()); obj->pins_[1] = net->pin(1).nexus()->t_cookie(); nexus_log_add(obj->pins_[1], obj, 1); /* Attach the logic device to the scope that contains it. */ assert(net->scope()); ivl_scope_t scop = find_scope(des_, net->scope()); assert(scop); obj->scope_ = scop; obj->name_ = net->name(); logic_attributes(obj, net); make_logic_delays_(obj, net); scope_add_logic(scop, obj); return true; } void dll_target::event(const NetEvent*net) { struct ivl_event_s *obj = new struct ivl_event_s; ivl_scope_t scop = find_scope(des_, net->scope()); obj->name = net->name(); obj->scope = scop; scope_add_event(scop, obj); obj->nany = 0; obj->nneg = 0; obj->npos = 0; if (net->nprobe() >= 1) { for (unsigned idx = 0 ; idx < net->nprobe() ; idx += 1) { const NetEvProbe*pr = net->probe(idx); switch (pr->edge()) { case NetEvProbe::ANYEDGE: obj->nany += pr->pin_count(); break; case NetEvProbe::NEGEDGE: obj->nneg += pr->pin_count(); break; case NetEvProbe::POSEDGE: obj->npos += pr->pin_count(); break; } } unsigned npins = obj->nany + obj->nneg + obj->npos; obj->pins = (ivl_nexus_t*)calloc(npins, sizeof(ivl_nexus_t)); } else { obj->pins = 0; } } void dll_target::logic(const NetLogic*net) { struct ivl_net_logic_s *obj = new struct ivl_net_logic_s; obj->width_ = net->width(); switch (net->type()) { case NetLogic::AND: obj->type_ = IVL_LO_AND; break; case NetLogic::BUF: obj->type_ = IVL_LO_BUF; break; case NetLogic::BUFIF0: obj->type_ = IVL_LO_BUFIF0; break; case NetLogic::BUFIF1: obj->type_ = IVL_LO_BUFIF1; break; case NetLogic::CMOS: obj->type_ = IVL_LO_CMOS; break; case NetLogic::NAND: obj->type_ = IVL_LO_NAND; break; case NetLogic::NMOS: obj->type_ = IVL_LO_NMOS; break; case NetLogic::NOR: obj->type_ = IVL_LO_NOR; break; case NetLogic::NOT: obj->type_ = IVL_LO_NOT; break; case NetLogic::NOTIF0: obj->type_ = IVL_LO_NOTIF0; break; case NetLogic::NOTIF1: obj->type_ = IVL_LO_NOTIF1; break; case NetLogic::OR: obj->type_ = IVL_LO_OR; break; case NetLogic::PULLDOWN: obj->type_ = IVL_LO_PULLDOWN; break; case NetLogic::PULLUP: obj->type_ = IVL_LO_PULLUP; break; case NetLogic::RCMOS: obj->type_ = IVL_LO_RCMOS; break; case NetLogic::RNMOS: obj->type_ = IVL_LO_RNMOS; break; case NetLogic::RPMOS: obj->type_ = IVL_LO_RPMOS; break; case NetLogic::PMOS: obj->type_ = IVL_LO_PMOS; break; case NetLogic::XNOR: obj->type_ = IVL_LO_XNOR; break; case NetLogic::XOR: obj->type_ = IVL_LO_XOR; break; default: assert(0); obj->type_ = IVL_LO_NONE; break; } /* Connect all the ivl_nexus_t objects to the pins of the device. */ obj->npins_ = net->pin_count(); obj->pins_ = new ivl_nexus_t[obj->npins_]; ivl_nexus_ptr_t out_ptr = 0; for (unsigned idx = 0 ; idx < obj->npins_ ; idx += 1) { const Nexus*nex = net->pin(idx).nexus(); assert(nex->t_cookie()); obj->pins_[idx] = nex->t_cookie(); ivl_nexus_ptr_t tmp = nexus_log_add(obj->pins_[idx], obj, idx); if (idx == 0) out_ptr = tmp; } switch (net->pin(0).drive0()) { case Link::HIGHZ: out_ptr->drive0 = IVL_DR_HiZ; break; case Link::WEAK: out_ptr->drive0 = IVL_DR_WEAK; break; case Link::PULL: out_ptr->drive0 = IVL_DR_PULL; break; case Link::STRONG: out_ptr->drive0 = IVL_DR_STRONG; break; case Link::SUPPLY: out_ptr->drive0 = IVL_DR_SUPPLY; break; } switch (net->pin(0).drive1()) { case Link::HIGHZ: out_ptr->drive1 = IVL_DR_HiZ; break; case Link::WEAK: out_ptr->drive1 = IVL_DR_WEAK; break; case Link::PULL: out_ptr->drive1 = IVL_DR_PULL; break; case Link::STRONG: out_ptr->drive1 = IVL_DR_STRONG; break; case Link::SUPPLY: out_ptr->drive1 = IVL_DR_SUPPLY; break; } assert(net->scope()); ivl_scope_t scop = find_scope(des_, net->scope()); assert(scop); obj->scope_= scop; obj->name_ = net->name(); logic_attributes(obj, net); make_logic_delays_(obj, net); scope_add_logic(scop, obj); } bool dll_target::tran(const NetTran*net) { struct ivl_switch_s*obj = new struct ivl_switch_s; obj->type = net->type(); obj->width = 0; obj->part = 0; obj->offset = 0; obj->name = net->name(); obj->scope = find_scope(des_, net->scope()); obj->island = net->island; assert(obj->scope); assert(obj->island); const Nexus*nex; nex = net->pin(0).nexus(); assert(nex->t_cookie()); obj->pins[0] = nex->t_cookie(); nex = net->pin(1).nexus(); assert(nex->t_cookie()); obj->pins[1] = nex->t_cookie(); nexus_switch_add(obj->pins[0], obj, 0); nexus_switch_add(obj->pins[1], obj, 1); if (net->pin_count() > 2) { nex = net->pin(2).nexus(); assert(nex->t_cookie()); obj->pins[2] = nex->t_cookie(); nexus_switch_add(obj->pins[2], obj, 2); } else { obj->pins[2] = 0; } if (obj->type == IVL_SW_TRAN_VP) { obj->width = net->vector_width(); obj->part = net->part_width(); obj->offset= net->part_offset(); } obj->file = net->get_file(); obj->lineno = net->get_lineno(); switch_attributes(obj, net); scope_add_switch(obj->scope, obj); return true; } bool dll_target::sign_extend(const NetSignExtend*net) { struct ivl_lpm_s*obj = new struct ivl_lpm_s; obj->type = IVL_LPM_SIGN_EXT; obj->width = net->width(); obj->name = net->name(); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); const Nexus*nex; nex = net->pin(0).nexus(); assert(nex->t_cookie()); obj->u_.reduce.q = nex->t_cookie(); nexus_lpm_add(obj->u_.reduce.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); nex = net->pin(1).nexus(); assert(nex->t_cookie()); obj->u_.reduce.a = nex->t_cookie(); nexus_lpm_add(obj->u_.reduce.a, obj, 1, IVL_DR_HiZ, IVL_DR_HiZ); make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); return true; } bool dll_target::ureduce(const NetUReduce*net) { struct ivl_lpm_s*obj = new struct ivl_lpm_s; switch (net->type()) { case NetUReduce::NONE: assert(0); return false; case NetUReduce::AND: obj->type = IVL_LPM_RE_AND; break; case NetUReduce::OR: obj->type = IVL_LPM_RE_OR; break; case NetUReduce::XOR: obj->type = IVL_LPM_RE_XOR; break; case NetUReduce::NAND: obj->type = IVL_LPM_RE_NAND; break; case NetUReduce::NOR: obj->type = IVL_LPM_RE_NOR; break; case NetUReduce::XNOR: obj->type = IVL_LPM_RE_XNOR; break; } obj->name = net->name(); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); obj->width = net->width(); const Nexus*nex; nex = net->pin(0).nexus(); assert(nex->t_cookie()); obj->u_.reduce.q = nex->t_cookie(); nexus_lpm_add(obj->u_.reduce.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); nex = net->pin(1).nexus(); assert(nex->t_cookie()); obj->u_.reduce.a = nex->t_cookie(); nexus_lpm_add(obj->u_.reduce.a, obj, 1, IVL_DR_HiZ, IVL_DR_HiZ); make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); return true; } void dll_target::net_case_cmp(const NetCaseCmp*net) { struct ivl_lpm_s*obj = new struct ivl_lpm_s; obj->type = net->eeq()? IVL_LPM_CMP_EEQ : IVL_LPM_CMP_NEE; obj->name = net->name(); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); obj->width = net->width(); obj->u_.arith.signed_flag = 0; const Nexus*nex; nex = net->pin(1).nexus(); assert(nex->t_cookie()); obj->u_.arith.a = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.a, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); nex = net->pin(2).nexus(); assert(nex->t_cookie()); obj->u_.arith.b = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.b, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); nex = net->pin(0).nexus(); assert(nex->t_cookie()); obj->u_.arith.q = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); } bool dll_target::net_sysfunction(const NetSysFunc*net) { unsigned idx; const Nexus*nex; struct ivl_lpm_s*obj = new struct ivl_lpm_s; obj->type = IVL_LPM_SFUNC; FILE_NAME(obj, net); obj->name = net->name(); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); obj->u_.sfunc.ports = net->pin_count(); assert(net->pin_count() >= 1); obj->width = net->vector_width(); obj->u_.sfunc.fun_name = net->func_name(); obj->u_.sfunc.pins = new ivl_nexus_t[net->pin_count()]; nex = net->pin(0).nexus(); assert(nex->t_cookie()); obj->u_.sfunc.pins[0] = nex->t_cookie(); nexus_lpm_add(obj->u_.sfunc.pins[0], obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); for (idx = 1 ; idx < net->pin_count() ; idx += 1) { nex = net->pin(idx).nexus(); assert(nex->t_cookie()); obj->u_.sfunc.pins[idx] = nex->t_cookie(); nexus_lpm_add(obj->u_.sfunc.pins[idx], obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); return true; } /* * An IVL_LPM_UFUNC represents a node in a combinational expression * that calls a user defined function. I create an LPM object that has * the right connections, and refers to the ivl_scope_t of the * definition. */ bool dll_target::net_function(const NetUserFunc*net) { struct ivl_lpm_s*obj = new struct ivl_lpm_s; obj->type = IVL_LPM_UFUNC; obj->name = net->name(); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); /* Get the definition of the function and save it. */ const NetScope*def = net->def(); assert(def); obj->u_.ufunc.def = lookup_scope_(def); /* Save information about the ports in the ivl_lpm_s structure. Note that port 0 is the return value. */ obj->u_.ufunc.ports = net->pin_count(); assert(net->pin_count() >= 1); obj->width = net->port_width(0); /* Now collect all the pins and connect them to the nexa of the net. The output pins have strong drive, and the remaining input pins are HiZ. */ obj->u_.ufunc.pins = new ivl_nexus_t[net->pin_count()]; for (unsigned idx = 0 ; idx < net->pin_count() ; idx += 1) { const Nexus*nex = net->pin(idx).nexus(); assert(nex->t_cookie()); ivl_nexus_t nn = nex->t_cookie(); assert(nn); obj->u_.ufunc.pins[idx] = nn; ivl_drive_t drive = idx == 0 ? IVL_DR_STRONG : IVL_DR_HiZ; nexus_lpm_add(obj->u_.ufunc.pins[idx], obj, idx, drive, drive); } make_lpm_delays_(obj, net); /* All done. Add this LPM to the scope. */ scope_add_lpm(obj->scope, obj); return true; } void dll_target::udp(const NetUDP*net) { struct ivl_net_logic_s *obj = new struct ivl_net_logic_s; obj->type_ = IVL_LO_UDP; /* The NetUDP class hasn't learned about width yet, so we assume a width of 1. */ obj->width_ = 1; static map udps; ivl_udp_t u; if (udps.find(net->udp_name()) != udps.end()) { u = udps[net->udp_name()]; } else { u = new struct ivl_udp_s; u->nrows = net->rows(); u->table = (ivl_udp_s::ccharp_t*)malloc((u->nrows+1)*sizeof(char*)); assert(u->table); u->table[u->nrows] = 0x0; u->nin = net->nin(); u->sequ = net->is_sequential(); if (u->sequ) u->init = net->get_initial(); else u->init = 'x'; u->name = net->udp_name(); string inp; char out; unsigned int i = 0; if (net->first(inp, out)) do { string tt = inp+out; u->table[i++] = strings_.add(tt.c_str()); } while (net->next(inp, out)); assert(i==u->nrows); udps[net->udp_name()] = u; } obj->udp = u; // Some duplication of code here, see: dll_target::logic() /* Connect all the ivl_nexus_t objects to the pins of the device. */ obj->npins_ = net->pin_count(); obj->pins_ = new ivl_nexus_t[obj->npins_]; for (unsigned idx = 0 ; idx < obj->npins_ ; idx += 1) { const Nexus*nex = net->pin(idx).nexus(); /* Skip unconnected input pins. These will take on HiZ values by the code generators. */ if (nex->t_cookie() == 0) { obj->pins_[idx] = 0; continue; } assert(nex->t_cookie()); obj->pins_[idx] = nex->t_cookie(); nexus_log_add(obj->pins_[idx], obj, idx); } assert(net->scope()); ivl_scope_t scop = find_scope(des_, net->scope()); assert(scop); obj->scope_= scop; obj->name_ = net->name(); make_logic_delays_(obj, net); obj->nattr = 0; obj->attr = 0; scope_add_logic(scop, obj); } void dll_target::lpm_abs(const NetAbs*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_ABS; obj->name = net->name(); // NetAddSub names are permallocated. assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); obj->u_.arith.signed_flag = 0; obj->width = net->width(); const Nexus*nex; /* the output is pin(0) */ nex = net->pin(0).nexus(); assert(nex->t_cookie()); obj->u_.arith.q = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); nex = net->pin(1).nexus(); assert(nex->t_cookie()); /* pin(1) is the input data. */ obj->u_.arith.a = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.a, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); } void dll_target::lpm_add_sub(const NetAddSub*net) { ivl_lpm_t obj = new struct ivl_lpm_s; if (net->attribute(perm_string::literal("LPM_Direction")) == verinum("SUB")) obj->type = IVL_LPM_SUB; else obj->type = IVL_LPM_ADD; obj->name = net->name(); // NetAddSub names are permallocated. assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); obj->u_.arith.signed_flag = 0; /* Choose the width of the adder. If the carry bit is connected, then widen the adder by one and plan on leaving the fake inputs unconnected. */ obj->width = net->width(); if (net->pin_Cout().is_linked()) { obj->width += 1; } const Nexus*nex; nex = net->pin_Result().nexus(); assert(nex->t_cookie()); obj->u_.arith.q = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); nex = net->pin_DataA().nexus(); assert(nex->t_cookie()); obj->u_.arith.a = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.a, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); nex = net->pin_DataB().nexus(); assert(nex->t_cookie()); obj->u_.arith.b = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.b, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); /* If the carry output is connected, then connect the extra Q pin to the carry nexus and zero the a and b inputs. */ if (net->pin_Cout().is_linked()) { cerr << "XXXX: t-dll.cc: Forgot how to connect cout." << endl; } make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); } bool dll_target::lpm_array_dq(const NetArrayDq*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_ARRAY; obj->name = net->name(); obj->u_.array.sig = find_signal(des_, net->mem()); assert(obj->u_.array.sig); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); obj->width = net->width(); obj->u_.array.swid = net->awidth(); make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); const Nexus*nex; nex = net->pin_Address().nexus(); assert(nex->t_cookie()); obj->u_.array.a = nex->t_cookie(); nexus_lpm_add(obj->u_.array.a, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); nex = net->pin_Result().nexus(); assert(nex->t_cookie()); obj->u_.array.q = nex->t_cookie(); nexus_lpm_add(obj->u_.array.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); return true; } /* * The lpm_clshift device represents both left and right shifts, * depending on what is connected to the Direction pin. We convert * this device into SHIFTL or SHIFTR devices. */ void dll_target::lpm_clshift(const NetCLShift*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_SHIFTL; obj->name = net->name(); assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); /* Look at the direction input of the device, and select the shift direction accordingly. */ if (net->right_flag()) obj->type = IVL_LPM_SHIFTR; if (net->signed_flag()) obj->u_.shift.signed_flag = 1; else obj->u_.shift.signed_flag = 0; obj->width = net->width(); obj->u_.shift.select = net->width_dist(); const Nexus*nex; nex = net->pin_Result().nexus(); assert(nex->t_cookie()); obj->u_.shift.q = nex->t_cookie(); nexus_lpm_add(obj->u_.shift.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); nex = net->pin_Data().nexus(); assert(nex->t_cookie()); obj->u_.shift.d = nex->t_cookie(); nexus_lpm_add(obj->u_.shift.d, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); nex = net->pin_Distance().nexus(); assert(nex->t_cookie()); obj->u_.shift.s = nex->t_cookie(); nexus_lpm_add(obj->u_.shift.s, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); } bool dll_target::lpm_cast_int(const NetCastInt*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_CAST_INT; obj->name = net->name(); // NetCastInt names are permallocated assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); obj->width = net->width(); const Nexus*nex; nex = net->pin(0).nexus(); assert(nex->t_cookie()); obj->u_.arith.q = nex->t_cookie(); nex = net->pin(1).nexus(); assert(nex->t_cookie()); obj->u_.arith.a = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); nexus_lpm_add(obj->u_.arith.a, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); return true; } bool dll_target::lpm_cast_real(const NetCastReal*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_CAST_REAL; obj->name = net->name(); // NetCastReal names are permallocated assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); obj->width = 0; obj->u_.arith.signed_flag = net->signed_flag()? 1 : 0; const Nexus*nex; nex = net->pin(0).nexus(); assert(nex->t_cookie()); obj->u_.arith.q = nex->t_cookie(); nex = net->pin(1).nexus(); assert(nex->t_cookie()); obj->u_.arith.a = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); nexus_lpm_add(obj->u_.arith.a, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); return true; } /* * Make out of the NetCompare object an ivl_lpm_s object. The * comparators in ivl_target do not support < or <=, but they can be * trivially converted to > and >= by swapping the operands. */ void dll_target::lpm_compare(const NetCompare*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->name = net->name(); // NetCompare names are permallocated assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); bool swap_operands = false; obj->width = net->width(); obj->u_.arith.signed_flag = net->get_signed()? 1 : 0; const Nexus*nex; nex = net->pin_DataA().nexus(); assert(nex->t_cookie()); obj->u_.arith.a = nex->t_cookie(); nex = net->pin_DataB().nexus(); assert(nex->t_cookie()); obj->u_.arith.b = nex->t_cookie(); if (net->pin_AGEB().is_linked()) { nex = net->pin_AGEB().nexus(); obj->type = IVL_LPM_CMP_GE; assert(nex->t_cookie()); obj->u_.arith.q = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); } else if (net->pin_AGB().is_linked()) { nex = net->pin_AGB().nexus(); obj->type = IVL_LPM_CMP_GT; assert(nex->t_cookie()); obj->u_.arith.q = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); } else if (net->pin_ALEB().is_linked()) { nex = net->pin_ALEB().nexus(); obj->type = IVL_LPM_CMP_GE; assert(nex->t_cookie()); obj->u_.arith.q = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); swap_operands = true; } else if (net->pin_ALB().is_linked()) { nex = net->pin_ALB().nexus(); obj->type = IVL_LPM_CMP_GT; assert(nex->t_cookie()); obj->u_.arith.q = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); swap_operands = true; } else if (net->pin_AEB().is_linked()) { nex = net->pin_AEB().nexus(); obj->type = IVL_LPM_CMP_EQ; assert(nex->t_cookie()); obj->u_.arith.q = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); } else if (net->pin_ANEB().is_linked()) { nex = net->pin_ANEB().nexus(); obj->type = IVL_LPM_CMP_NE; assert(nex->t_cookie()); obj->u_.arith.q = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); } else { assert(0); } if (swap_operands) { ivl_nexus_t tmp = obj->u_.arith.a; obj->u_.arith.a = obj->u_.arith.b; obj->u_.arith.b = tmp; } nexus_lpm_add(obj->u_.arith.a, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); nexus_lpm_add(obj->u_.arith.b, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); } void dll_target::lpm_divide(const NetDivide*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_DIVIDE; obj->name = net->name(); assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); unsigned wid = net->width_r(); obj->width = wid; obj->u_.arith.signed_flag = net->get_signed()? 1 : 0; const Nexus*nex; nex = net->pin_Result().nexus(); assert(nex->t_cookie()); obj->u_.arith.q = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); nex = net->pin_DataA().nexus(); assert(nex->t_cookie()); obj->u_.arith.a = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.a, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); nex = net->pin_DataB().nexus(); assert(nex->t_cookie()); obj->u_.arith.b = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.b, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); } void dll_target::lpm_modulo(const NetModulo*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_MOD; obj->name = net->name(); assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); unsigned wid = net->width_r(); obj->width = wid; obj->u_.arith.signed_flag = net->get_signed()? 1 : 0; const Nexus*nex; nex = net->pin_Result().nexus(); assert(nex->t_cookie()); obj->u_.arith.q = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); nex = net->pin_DataA().nexus(); assert(nex->t_cookie()); obj->u_.arith.a = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.a, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); nex = net->pin_DataB().nexus(); assert(nex->t_cookie()); obj->u_.arith.b = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.b, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); } void dll_target::lpm_ff(const NetFF*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_FF; obj->name = net->name(); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); obj->width = net->width(); scope_add_lpm(obj->scope, obj); const Nexus*nex; /* Set the clk signal to point to the nexus, and the nexus to point back to this device. */ nex = net->pin_Clock().nexus(); assert(nex->t_cookie()); obj->u_.ff.clk = nex->t_cookie(); assert(obj->u_.ff.clk); nexus_lpm_add(obj->u_.ff.clk, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); /* If there is a clock enable, then connect it up to the FF device. */ if (net->pin_Enable().is_linked()) { nex = net->pin_Enable().nexus(); assert(nex->t_cookie()); obj->u_.ff.we = nex->t_cookie(); assert(obj->u_.ff.we); nexus_lpm_add(obj->u_.ff.we, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } else { obj->u_.ff.we = 0; } if (net->pin_Aclr().is_linked()) { nex = net->pin_Aclr().nexus(); assert(nex->t_cookie()); obj->u_.ff.aclr = nex->t_cookie(); assert(obj->u_.ff.aclr); nexus_lpm_add(obj->u_.ff.aclr, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } else { obj->u_.ff.aclr = 0; } if (net->pin_Aset().is_linked()) { nex = net->pin_Aset().nexus(); assert(nex->t_cookie()); obj->u_.ff.aset = nex->t_cookie(); assert(obj->u_.ff.aset); nexus_lpm_add(obj->u_.ff.aset, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); verinum tmp = net->aset_value(); obj->u_.ff.aset_value = expr_from_value_(tmp); } else { obj->u_.ff.aset = 0; obj->u_.ff.aset_value = 0; } if (net->pin_Sclr().is_linked()) { nex = net->pin_Sclr().nexus(); assert(nex->t_cookie()); obj->u_.ff.sclr = nex->t_cookie(); assert(obj->u_.ff.sclr); nexus_lpm_add(obj->u_.ff.sclr, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } else { obj->u_.ff.sclr = 0; } if (net->pin_Sset().is_linked()) { nex = net->pin_Sset().nexus(); assert(nex->t_cookie()); obj->u_.ff.sset = nex->t_cookie(); assert(obj->u_.ff.sset); nexus_lpm_add(obj->u_.ff.sset, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); verinum tmp = net->sset_value(); obj->u_.ff.sset_value = expr_from_value_(tmp); } else { obj->u_.ff.sset = 0; obj->u_.ff.sset_value = 0; } nex = net->pin_Q().nexus(); assert(nex->t_cookie()); obj->u_.ff.q.pin = nex->t_cookie(); nexus_lpm_add(obj->u_.ff.q.pin, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); nex = net->pin_Data().nexus(); assert(nex->t_cookie()); obj->u_.ff.d.pin = nex->t_cookie(); nexus_lpm_add(obj->u_.ff.d.pin, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } /* * Make the NetMult object into an IVL_LPM_MULT node. */ void dll_target::lpm_mult(const NetMult*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_MULT; obj->name = net->name(); assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); unsigned wid = net->width_r(); obj->width = wid; obj->u_.arith.signed_flag = 0; const Nexus*nex; nex = net->pin_Result().nexus(); assert(nex->t_cookie()); obj->u_.arith.q = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); nex = net->pin_DataA().nexus(); assert(nex->t_cookie()); obj->u_.arith.a = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.a, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); nex = net->pin_DataB().nexus(); assert(nex->t_cookie()); obj->u_.arith.b = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.b, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); } /* * Hook up the mux devices so that the select expression selects the * correct sub-expression with the ivl_lpm_data2 function. */ void dll_target::lpm_mux(const NetMux*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_MUX; obj->name = net->name(); // The NetMux permallocates its name. obj->scope = find_scope(des_, net->scope()); assert(obj->scope); obj->width = net->width(); obj->u_.mux.size = net->size(); obj->u_.mux.swid = net->sel_width(); make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); const Nexus*nex; /* Connect the output bits. */ nex = net->pin_Result().nexus(); assert(nex->t_cookie()); obj->u_.mux.q = nex->t_cookie(); nexus_lpm_add(obj->u_.mux.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); /* Connect the select bits. */ nex = net->pin_Sel().nexus(); assert(nex->t_cookie()); obj->u_.mux.s = nex->t_cookie(); nexus_lpm_add(obj->u_.mux.s, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); unsigned selects = obj->u_.mux.size; obj->u_.mux.d = new ivl_nexus_t [selects]; for (unsigned sdx = 0 ; sdx < selects ; sdx += 1) { nex = net->pin_Data(sdx).nexus(); ivl_nexus_t tmp = nex->t_cookie(); obj->u_.mux.d[sdx] = tmp; nexus_lpm_add(tmp, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); } } /* * Make the NetPow object into an IVL_LPM_POW node. */ void dll_target::lpm_pow(const NetPow*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_POW; FILE_NAME(obj, net); obj->name = net->name(); assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); unsigned wid = net->width_r(); obj->u_.arith.signed_flag = net->get_signed()? 1 : 0; obj->width = wid; const Nexus*nex; nex = net->pin_Result().nexus(); assert(nex->t_cookie()); obj->u_.arith.q = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); nex = net->pin_DataA().nexus(); assert(nex->t_cookie()); obj->u_.arith.a = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.a, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); nex = net->pin_DataB().nexus(); assert(nex->t_cookie()); obj->u_.arith.b = nex->t_cookie(); nexus_lpm_add(obj->u_.arith.b, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); } bool dll_target::concat(const NetConcat*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_CONCAT; obj->name = net->name(); // NetConcat names are permallocated assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); obj->width = net->width(); obj->u_.concat.inputs = net->pin_count() - 1; obj->u_.concat.pins = new ivl_nexus_t[obj->u_.concat.inputs+1]; for (unsigned idx = 0 ; idx < obj->u_.concat.inputs+1 ; idx += 1) { ivl_drive_t dr = idx == 0? IVL_DR_STRONG : IVL_DR_HiZ; const Nexus*nex = net->pin(idx).nexus(); assert(nex->t_cookie()); obj->u_.concat.pins[idx] = nex->t_cookie(); nexus_lpm_add(obj->u_.concat.pins[idx], obj, 0, dr, dr); } make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); return true; } bool dll_target::part_select(const NetPartSelect*net) { ivl_lpm_t obj = new struct ivl_lpm_s; switch (net->dir()) { case NetPartSelect::VP: obj->type = IVL_LPM_PART_VP; break; case NetPartSelect::PV: obj->type = IVL_LPM_PART_PV; break; } obj->name = net->name(); // NetPartSelect names are permallocated. assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); /* Part selects are always unsigned. */ obj->u_.part.signed_flag = 0; /* Choose the width of the part select. */ obj->width = net->width(); obj->u_.part.base = net->base(); obj->u_.part.s = 0; const Nexus*nex; switch (obj->type) { case IVL_LPM_PART_VP: /* NetPartSelect:pin(0) is the output pin. */ nex = net->pin(0).nexus(); assert(nex->t_cookie()); obj->u_.part.q = nex->t_cookie(); /* NetPartSelect:pin(1) is the input pin. */ nex = net->pin(1).nexus(); assert(nex->t_cookie()); obj->u_.part.a = nex->t_cookie(); /* If the part select has an additional pin, that pin is a variable select base. */ if (net->pin_count() >= 3) { nex = net->pin(2).nexus(); assert(nex->t_cookie()); obj->u_.part.s = nex->t_cookie(); } break; case IVL_LPM_PART_PV: /* NetPartSelect:pin(1) is the output pin. */ nex = net->pin(1).nexus(); assert(nex->t_cookie()); obj->u_.part.q = nex->t_cookie(); /* NetPartSelect:pin(0) is the input pin. */ nex = net->pin(0).nexus(); assert(nex->t_cookie()); obj->u_.part.a = nex->t_cookie(); break; default: assert(0); } nexus_lpm_add(obj->u_.part.q, obj, 0, IVL_DR_STRONG, IVL_DR_STRONG); nexus_lpm_add(obj->u_.part.a, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); /* The select input is optional. */ if (obj->u_.part.s) nexus_lpm_add(obj->u_.part.s, obj, 0, IVL_DR_HiZ, IVL_DR_HiZ); make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); return true; } bool dll_target::replicate(const NetReplicate*net) { ivl_lpm_t obj = new struct ivl_lpm_s; obj->type = IVL_LPM_REPEAT; obj->name = net->name(); assert(net->scope()); obj->scope = find_scope(des_, net->scope()); assert(obj->scope); obj->width = net->width(); obj->u_.repeat.count = net->repeat(); ivl_drive_t dr = IVL_DR_STRONG; const Nexus*nex = net->pin(0).nexus(); assert(nex->t_cookie()); obj->u_.repeat.q = nex->t_cookie(); nexus_lpm_add(obj->u_.repeat.q, obj, 0, dr, dr); dr = IVL_DR_HiZ; nex = net->pin(1).nexus(); assert(nex->t_cookie()); obj->u_.repeat.a = nex->t_cookie(); nexus_lpm_add(obj->u_.repeat.a, obj, 0, dr, dr); make_lpm_delays_(obj, net); scope_add_lpm(obj->scope, obj); return true; } /* * The assignment l-values are captured by the assignment statements * themselves in the process handling. */ void dll_target::net_assign(const NetAssign_*) { } bool dll_target::net_const(const NetConst*net) { unsigned idx; char*bits; struct ivl_net_const_s *obj = new struct ivl_net_const_s; obj->type = IVL_VT_BOOL; /* constants have a single vector output. */ assert(net->pin_count() == 1); obj->width_ = net->width(); obj->signed_ = 0; if (obj->width_ <= sizeof(obj->b.bit_)) { bits = obj->b.bit_; } else { obj->b.bits_ = (char*)malloc(obj->width_); bits = obj->b.bits_; } for (idx = 0 ; idx < obj->width_ ; idx += 1) switch (net->value(idx)) { case verinum::V0: bits[idx] = '0'; break; case verinum::V1: bits[idx] = '1'; break; case verinum::Vx: if (obj->type == IVL_VT_BOOL) obj->type = IVL_VT_LOGIC; bits[idx] = 'x'; break; case verinum::Vz: if (obj->type == IVL_VT_BOOL) obj->type = IVL_VT_LOGIC; bits[idx] = 'z'; break; } /* Connect to all the nexus objects. Note that the one-bit case can be handled more efficiently without allocating array space. */ ivl_drive_t drv0, drv1; drive_from_link(net->pin(0), drv0, drv1); const Nexus*nex = net->pin(0).nexus(); assert(nex->t_cookie()); obj->pin_ = nex->t_cookie(); nexus_con_add(obj->pin_, obj, 0, drv0, drv1); des_.nconsts += 1; des_.consts = (ivl_net_const_t*) realloc(des_.consts, des_.nconsts * sizeof(ivl_net_const_t)); des_.consts[des_.nconsts-1] = obj; make_const_delays_(obj, net); return true; } bool dll_target::net_literal(const NetLiteral*net) { struct ivl_net_const_s *obj = new struct ivl_net_const_s; obj->type = IVL_VT_REAL; obj->width_ = 1; obj->signed_ = 1; obj->b.real_value = net->value_real().as_double(); /* Connect to all the nexus objects. Note that the one-bit case can be handled more efficiently without allocating array space. */ ivl_drive_t drv0, drv1; drive_from_link(net->pin(0), drv0, drv1); const Nexus*nex = net->pin(0).nexus(); assert(nex->t_cookie()); obj->pin_ = nex->t_cookie(); nexus_con_add(obj->pin_, obj, 0, drv0, drv1); des_.nconsts += 1; des_.consts = (ivl_net_const_t*) realloc(des_.consts, des_.nconsts * sizeof(ivl_net_const_t)); des_.consts[des_.nconsts-1] = obj; make_const_delays_(obj, net); return true; } void dll_target::net_probe(const NetEvProbe*net) { } void dll_target::scope(const NetScope*net) { ivl_scope_t scop; if (net->parent() == 0) { unsigned i; scop = NULL; for (i = 0; i < des_.nroots_ && scop == NULL; i++) { if (strcmp(des_.roots_[i]->name_, net->basename()) == 0) scop = des_.roots_[i]; } assert(scop); } else { perm_string sname = make_scope_name(net->fullname()); scop = new struct ivl_scope_s; scop->name_ = sname; FILE_NAME(scop, net); scop->child_ = 0; scop->sibling_ = 0; scop->parent = find_scope(des_, net->parent()); assert(scop->parent); scop->nsigs_ = 0; scop->sigs_ = 0; scop->nlog_ = 0; scop->log_ = 0; scop->nevent_ = 0; scop->event_ = 0; scop->nlpm_ = 0; scop->lpm_ = 0; scop->def = 0; make_scope_parameters(scop, net); scop->time_precision = net->time_precision(); scop->time_units = net->time_unit(); scop->nattr = net->attr_cnt(); scop->attr = fill_in_attributes(net); scop->is_auto = net->is_auto(); switch (net->type()) { case NetScope::MODULE: scop->type_ = IVL_SCT_MODULE; scop->tname_ = net->module_name(); break; case NetScope::TASK: { const NetTaskDef*def = net->task_def(); if (def == 0) { cerr << "?:?" << ": internal error: " << "task " << scop->name_ << " has no definition." << endl; } assert(def); scop->type_ = IVL_SCT_TASK; scop->tname_ = def->scope()->basename(); break; } case NetScope::FUNC: scop->type_ = IVL_SCT_FUNCTION; scop->tname_ = net->func_def()->scope()->basename(); break; case NetScope::BEGIN_END: scop->type_ = IVL_SCT_BEGIN; scop->tname_ = scop->name_; break; case NetScope::FORK_JOIN: scop->type_ = IVL_SCT_FORK; scop->tname_ = scop->name_; break; case NetScope::GENBLOCK: scop->type_ = IVL_SCT_GENERATE; scop->tname_ = scop->name_; break; } assert(scop->parent != 0); scop->sibling_= scop->parent->child_; scop->parent->child_ = scop; } } void dll_target::signal(const NetNet*net) { ivl_signal_t obj = new struct ivl_signal_s; obj->name_ = net->name(); /* Attach the signal to the ivl_scope_t object that contains it. This involves growing the sigs_ array in the scope object, or creating the sigs_ array if this is the first signal. */ obj->scope_ = find_scope(des_, net->scope()); FILE_NAME(obj, net); assert(obj->scope_); if (obj->scope_->nsigs_ == 0) { assert(obj->scope_->sigs_ == 0); obj->scope_->nsigs_ = 1; obj->scope_->sigs_ = (ivl_signal_t*)malloc(sizeof(ivl_signal_t)); } else { assert(obj->scope_->sigs_); obj->scope_->nsigs_ += 1; obj->scope_->sigs_ = (ivl_signal_t*) realloc(obj->scope_->sigs_, obj->scope_->nsigs_*sizeof(ivl_signal_t)); } obj->scope_->sigs_[obj->scope_->nsigs_-1] = obj; /* Save the primitive properties of the signal in the ivl_signal_t object. */ obj->width_ = net->vector_width(); obj->signed_= net->get_signed()? 1 : 0; obj->lsb_index = net->lsb(); obj->lsb_dist = net->msb() >= net->lsb() ? 1 : -1; obj->isint_ = false; obj->local_ = net->local_flag()? 1 : 0; obj->discipline = net->get_discipline(); obj->array_dimensions_ = net->array_dimensions(); switch (net->port_type()) { case NetNet::PINPUT: obj->port_ = IVL_SIP_INPUT; break; case NetNet::POUTPUT: obj->port_ = IVL_SIP_OUTPUT; break; case NetNet::PINOUT: obj->port_ = IVL_SIP_INOUT; break; default: obj->port_ = IVL_SIP_NONE; break; } switch (net->type()) { case NetNet::REG: obj->type_ = IVL_SIT_REG; obj->isint_ = net->get_isint(); break; /* The SUPPLY0/1 net types are replaced with pulldown/up by elaborate. They should not make it here. */ case NetNet::SUPPLY0: assert(0); break; case NetNet::SUPPLY1: assert(0); break; case NetNet::TRI: case NetNet::WIRE: case NetNet::IMPLICIT: obj->type_ = IVL_SIT_TRI; break; case NetNet::TRI0: obj->type_ = IVL_SIT_TRI0; break; case NetNet::TRI1: obj->type_ = IVL_SIT_TRI1; break; case NetNet::TRIAND: case NetNet::WAND: obj->type_ = IVL_SIT_TRIAND; break; case NetNet::TRIOR: case NetNet::WOR: obj->type_ = IVL_SIT_TRIOR; break; default: obj->type_ = IVL_SIT_NONE; break; } /* Initialize the path fields to be filled in later. */ obj->npath = 0; obj->path = 0; obj->data_type = net->data_type(); obj->nattr = net->attr_cnt(); obj->attr = fill_in_attributes(net); /* Get the nexus objects for all the pins of the signal. If the signal has only one pin, then write the single ivl_nexus_t object into n.pin_. Otherwise, make an array of ivl_nexus_t cookies. When I create an ivl_nexus_t object, store it in the t_cookie of the Nexus object so that I find it again when I next encounter the nexus. */ obj->array_base = net->array_first(); obj->array_words = net->array_count(); if (obj->array_words > 1) obj->pins = new ivl_nexus_t[obj->array_words]; for (unsigned idx = 0 ; idx < obj->array_words ; idx += 1) { const Nexus*nex = net->pin(idx).nexus(); if (nex->t_cookie()) { if (obj->array_words > 1) { obj->pins[idx] = nex->t_cookie(); nexus_sig_add(obj->pins[idx], obj, idx); } else { obj->pin = nex->t_cookie(); nexus_sig_add(obj->pin, obj, idx); } } else { ivl_nexus_t tmp = nexus_sig_make(obj, idx); tmp->nexus_ = nex; tmp->name_ = 0; nex->t_cookie(tmp); if (obj->array_words > 1) obj->pins[idx] = tmp; else obj->pin = tmp; } } } bool dll_target::signal_paths(const NetNet*net) { /* Nothing to do if there are no paths for this signal. */ if (net->delay_paths() == 0) return true; ivl_signal_t obj = find_signal(des_, net); assert(obj); /* We cannot have already set up the paths for this signal. */ assert(obj->npath == 0); assert(obj->path == 0); /* Figure out how many paths there really are. */ for (unsigned idx = 0 ; idx < net->delay_paths() ; idx += 1) { const NetDelaySrc*src = net->delay_path(idx); obj->npath += src->src_count(); } obj->path = new struct ivl_delaypath_s[obj->npath]; unsigned ptr = 0; for (unsigned idx = 0 ; idx < net->delay_paths() ; idx += 1) { const NetDelaySrc*src = net->delay_path(idx); /* If this path has a condition, then hook it up. */ ivl_nexus_t path_condit = 0; if (src->has_condit()) { const Nexus*nt = src->condit_pin().nexus(); path_condit = nt->t_cookie(); } for (unsigned pin = 0; pin < src->src_count(); pin += 1) { const Nexus*nex = src->src_pin(pin).nexus(); if (! nex->t_cookie()) { cerr << src->get_fileline() << ": internal error: " << "No signal connected to pin " << pin << " of delay path to " << net->name() << "." << endl; } assert(nex->t_cookie()); obj->path[ptr].scope = lookup_scope_(src->scope()); obj->path[ptr].src = nex->t_cookie(); obj->path[ptr].condit = path_condit; obj->path[ptr].conditional = src->is_condit(); obj->path[ptr].posedge = src->is_posedge(); obj->path[ptr].negedge = src->is_negedge(); for (unsigned pe = 0 ; pe < 12 ; pe += 1) { obj->path[ptr].delay[pe] = src->get_delay(pe); } ptr += 1; } } return true; } void dll_target::test_version(const char*target_name) { dll_ = ivl_dlopen(target_name); if ((dll_ == 0) && (target_name[0] != '/')) { size_t len = strlen(basedir) + 1 + strlen(target_name) + 1; char*tmp = new char[len]; sprintf(tmp, "%s/%s", basedir, target_name); dll_ = ivl_dlopen(tmp); delete[]tmp; } if (dll_ == 0) { cout << "\n\nUnable to load " << target_name << " for version details." << endl; return; } target_query_f target_query = (target_query_f)ivl_dlsym(dll_, LU "target_query" TU); if (target_query == 0) { cerr << "Target " << target_name << " has no version hooks." << endl; return; } const char*version_string = (*target_query) ("version"); if (version_string == 0) { cerr << "Target " << target_name << " has no version string" << endl; return; } cout << target_name << ": " << version_string << endl; }