/* * Copyright (c) 2005 Stephen Williams * * This source code is free software; you can redistribute it * and/or modify it in source code form under the terms of the GNU * General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ #ifdef HAVE_CVS_IDENT #ident "$Id: delay.cc,v 1.19 2007/03/04 06:26:58 steve Exp $" #endif #include "delay.h" #include "schedule.h" #include #include void vvp_delay_t::calculate_min_delay_() { min_delay_ = rise_; if (fall_ < min_delay_) min_delay_ = fall_; if (decay_ < min_delay_) min_delay_ = decay_; } vvp_delay_t::vvp_delay_t(vvp_time64_t rise, vvp_time64_t fall) { rise_ = rise; fall_ = fall; decay_= fall < rise? fall : rise; min_delay_ = decay_; } vvp_delay_t::vvp_delay_t(vvp_time64_t rise, vvp_time64_t fall, vvp_time64_t decay) { rise_ = rise; fall_ = fall; decay_= decay; calculate_min_delay_(); } vvp_delay_t::~vvp_delay_t() { } vvp_time64_t vvp_delay_t::get_delay(vvp_bit4_t from, vvp_bit4_t to) { switch (from) { case BIT4_0: switch (to) { case BIT4_0: return 0; case BIT4_1: return rise_; case BIT4_X: return min_delay_; case BIT4_Z: return decay_; } break; case BIT4_1: switch (to) { case BIT4_0: return fall_; case BIT4_1: return 0; case BIT4_X: return min_delay_; case BIT4_Z: return decay_; } break; case BIT4_X: switch (to) { case BIT4_0: return fall_; case BIT4_1: return rise_; case BIT4_X: return 0; case BIT4_Z: return decay_; } break; case BIT4_Z: switch (to) { case BIT4_0: return fall_; case BIT4_1: return rise_; case BIT4_X: return min_delay_; case BIT4_Z: return 0; } break; } assert(0); return 0; } vvp_time64_t vvp_delay_t::get_min_delay() const { return min_delay_; } void vvp_delay_t::set_rise(vvp_time64_t val) { rise_ = val; if (val < min_delay_) min_delay_ = val; else calculate_min_delay_(); } void vvp_delay_t::set_fall(vvp_time64_t val) { fall_ = val; if (val < min_delay_) min_delay_ = val; else calculate_min_delay_(); } void vvp_delay_t::set_decay(vvp_time64_t val) { decay_ = val; if (val < min_delay_) min_delay_ = val; else calculate_min_delay_(); } vvp_fun_delay::vvp_fun_delay(vvp_net_t*n, vvp_bit4_t init, const vvp_delay_t&d) : net_(n), delay_(d), cur_vec4_(1) { cur_vec4_.set_bit(0, init); list_ = 0; } vvp_fun_delay::~vvp_fun_delay() { while (struct event_*cur = dequeue_()) delete cur; } void vvp_fun_delay::clean_pulse_events_(vvp_time64_t use_delay) { if (list_ == 0) return; do { struct event_*cur = list_->next; /* If this event is far enough from the event I'm about to create, then that scheduled event is not a pulse to be eliminated, so we're done. */ if (cur->sim_time+use_delay <= use_delay+schedule_simtime()) break; if (list_ == cur) list_ = 0; else list_->next = cur->next; delete cur; } while (list_); } /* * FIXME: this implementation currently only uses the maximum delay * from all the bit changes in the vectors. If there are multiple * changes with different delays, then the results would be * wrong. What should happen is that if there are multiple changes, * multiple vectors approaching the result should be scheduled. */ void vvp_fun_delay::recv_vec4(vvp_net_ptr_t port, const vvp_vector4_t&bit) { if (port.port() > 0) { // Get the integer value of the bit vector, or 0 if // there are X or Z bits. unsigned long val = 0; vector4_to_value(bit, val); switch (port.port()) { case 1: delay_.set_rise(val); return; case 2: delay_.set_fall(val); return; case 3: delay_.set_decay(val); return; } return; } /* How many bits to compare? */ unsigned use_wid = cur_vec4_.size(); if (bit.size() < use_wid) use_wid = bit.size(); /* Scan the vectors looking for delays. Select the maximim delay encountered. */ vvp_time64_t use_delay; use_delay = delay_.get_delay(cur_vec4_.value(0), bit.value(0)); for (unsigned idx = 1 ; idx < use_wid ; idx += 1) { vvp_time64_t tmp; tmp = delay_.get_delay(cur_vec4_.value(idx), bit.value(idx)); if (tmp > use_delay) use_delay = tmp; } /* what *should* happen here is we check to see if there is a transaction in the queue. This would be a pulse that needs to be eliminated. */ clean_pulse_events_(use_delay); vvp_time64_t use_simtime = schedule_simtime() + use_delay; /* And propagate it. */ if (use_delay == 0) { cur_vec4_ = bit; vvp_send_vec4(net_->out, cur_vec4_); } else { struct event_*cur = new struct event_(use_simtime); cur->run_run_ptr = &vvp_fun_delay::run_run_vec4_; cur->ptr_vec4 = bit; enqueue_(cur); schedule_generic(this, use_delay, false); } } void vvp_fun_delay::recv_vec8(vvp_net_ptr_t port, vvp_vector8_t bit) { assert(port.port() == 0); if (cur_vec8_.eeq(bit)) return; /* XXXX FIXME: For now, just use the minimum delay. */ vvp_time64_t use_delay; use_delay = delay_.get_min_delay(); vvp_time64_t use_simtime = schedule_simtime() + use_delay; if (use_delay == 0) { cur_vec8_ = bit; vvp_send_vec8(net_->out, cur_vec8_); } else { struct event_*cur = new struct event_(use_simtime); cur->ptr_vec8 = bit; cur->run_run_ptr = &vvp_fun_delay::run_run_vec8_; enqueue_(cur); schedule_generic(this, use_delay, false); } } void vvp_fun_delay::recv_real(vvp_net_ptr_t port, double bit) { if (port.port() > 0) { /* If the port is not 0, then this is a delay value that should be rounded and converted to an integer delay. */ unsigned long long val = 0; if (bit > 0) val = (unsigned long long) (bit+0.5); switch (port.port()) { case 1: delay_.set_rise(val); return; case 2: delay_.set_fall(val); return; case 3: delay_.set_decay(val); return; } return; } if (cur_real_ == bit) return; vvp_time64_t use_delay; use_delay = delay_.get_min_delay(); vvp_time64_t use_simtime = schedule_simtime() + use_delay; if (use_delay == 0) { cur_real_ = bit; vvp_send_real(net_->out, cur_real_); } else { struct event_*cur = new struct event_(use_simtime); cur->run_run_ptr = &vvp_fun_delay::run_run_real_; cur->ptr_real = bit; enqueue_(cur); schedule_generic(this, use_delay, false); } } void vvp_fun_delay::run_run() { vvp_time64_t sim_time = schedule_simtime(); if (list_ == 0 || list_->next->sim_time > sim_time) return; struct event_*cur = dequeue_(); if (cur == 0) return; (this->*(cur->run_run_ptr))(cur); delete cur; } void vvp_fun_delay::run_run_vec4_(struct event_*cur) { cur_vec4_ = cur->ptr_vec4; vvp_send_vec4(net_->out, cur_vec4_); } void vvp_fun_delay::run_run_vec8_(struct vvp_fun_delay::event_*cur) { cur_vec8_ = cur->ptr_vec8; vvp_send_vec8(net_->out, cur_vec8_); } void vvp_fun_delay::run_run_real_(struct vvp_fun_delay::event_*cur) { cur_real_ = cur->ptr_real; vvp_send_real(net_->out, cur_real_); } vvp_fun_modpath::vvp_fun_modpath(vvp_net_t*net) : net_(net), src_list_(0) { } vvp_fun_modpath::~vvp_fun_modpath() { // Delete the source probes. while (src_list_) { vvp_fun_modpath_src*tmp = src_list_; src_list_ = tmp->next_; delete tmp; } } void vvp_fun_modpath::add_modpath_src(vvp_fun_modpath_src*that) { assert(that->next_ == 0); that->next_ = src_list_; src_list_ = that; } static vvp_time64_t delay_from_edge(vvp_bit4_t a, vvp_bit4_t b, vvp_time64_t array[12]) { typedef delay_edge_t bit4_table4[4]; const static bit4_table4 edge_table[4] = { { DELAY_EDGE_01, DELAY_EDGE_01, DELAY_EDGE_0x, DELAY_EDGE_0z }, { DELAY_EDGE_10, DELAY_EDGE_10, DELAY_EDGE_1x, DELAY_EDGE_1z }, { DELAY_EDGE_x0, DELAY_EDGE_x1, DELAY_EDGE_x0, DELAY_EDGE_xz }, { DELAY_EDGE_z0, DELAY_EDGE_z1, DELAY_EDGE_zx, DELAY_EDGE_z0 } }; return array[ edge_table[a][b] ]; } void vvp_fun_modpath::recv_vec4(vvp_net_ptr_t port, const vvp_vector4_t&bit) { /* Only the first port is used. */ if (port.port() > 0) return; if (cur_vec4_.eeq(bit)) return; /* Select a time delay source that applies. */ vvp_fun_modpath_src*src = 0; for (vvp_fun_modpath_src*cur = src_list_ ; cur ; cur=cur->next_) { /* Skip paths that are disabled by conditions. */ if (cur->condition_flag_ == false) continue; if (src == 0) { src = cur; } else if (cur->wake_time_ > src->wake_time_) { src = cur; } else { continue; /* Skip this entry. */ } } assert(src); vvp_time64_t out_at[12]; vvp_time64_t now = schedule_simtime(); for (unsigned idx = 0 ; idx < 12 ; idx += 1) { out_at[idx] = src->wake_time_ + src->delay_[idx]; if (out_at[idx] <= now) out_at[idx] = 0; else out_at[idx] -= now; } /* Given the scheduled output time, create an output event. */ vvp_time64_t use_delay = delay_from_edge(cur_vec4_.value(0), bit.value(0), out_at); /* FIXME: This bases the edge delay on only the least bit. This is WRONG! I need to find all the possible delays, and schedule an event for each partial change. Hard! */ for (unsigned idx = 1 ; idx < bit.size() ; idx += 1) { vvp_time64_t tmp = delay_from_edge(cur_vec4_.value(idx), bit.value(0), out_at); assert(tmp == use_delay); } cur_vec4_ = bit; schedule_generic(this, use_delay, false); } void vvp_fun_modpath::run_run() { vvp_send_vec4(net_->out, cur_vec4_); } vvp_fun_modpath_src::vvp_fun_modpath_src(vvp_time64_t del[12]) { for (unsigned idx = 0 ; idx < 12 ; idx += 1) delay_[idx] = del[idx]; next_ = 0; wake_time_ = 0; condition_flag_ = true; } vvp_fun_modpath_src::~vvp_fun_modpath_src() { } void vvp_fun_modpath_src::recv_vec4(vvp_net_ptr_t port, const vvp_vector4_t&bit) { if (port.port() == 0) { // The modpath input... if (test_vec4(bit)) wake_time_ = schedule_simtime(); } else if (port.port() == 1) { // The modpath condition input... if (bit.value(0) == BIT4_1) condition_flag_ = true; else condition_flag_ = false; } } bool vvp_fun_modpath_src::test_vec4(const vvp_vector4_t&) { return true; } vvp_fun_modpath_edge::vvp_fun_modpath_edge(vvp_time64_t del[12], bool pos, bool neg) : vvp_fun_modpath_src(del) { old_value_ = BIT4_X; posedge_ = pos; negedge_ = neg; } bool vvp_fun_modpath_edge::test_vec4(const vvp_vector4_t&bit) { vvp_bit4_t tmp = old_value_; old_value_ = bit.value(0); int edge_flag = edge(tmp, old_value_); if (edge_flag > 0) return posedge_; if (edge_flag < 0) return negedge_; return false; } /* * $Log: delay.cc,v $ * Revision 1.19 2007/03/04 06:26:58 steve * Assert that modpath finds a delay. * * Revision 1.18 2007/03/02 06:13:22 steve * Add support for edge sensitive spec paths. * * Revision 1.17 2007/03/01 06:19:39 steve * Add support for conditional specify delay paths. * * Revision 1.16 2007/01/26 05:15:41 steve * More literal implementation of inertial delay model. * * Revision 1.15 2006/09/29 03:57:01 steve * Modpath delay chooses correct delay for edge. * * Revision 1.14 2006/09/23 04:57:19 steve * Basic support for specify timing. * * Revision 1.13 2006/07/08 21:48:00 steve * Delay object supports real valued delays. * * Revision 1.12 2006/01/02 05:32:07 steve * Require explicit delay node from source. * * Revision 1.11 2005/11/10 13:27:16 steve * Handle very wide % and / operations using expanded vector2 support. * * Revision 1.10 2005/09/20 18:34:02 steve * Clean up compiler warnings. * * Revision 1.9 2005/07/06 04:29:25 steve * Implement real valued signals and arith nodes. * * Revision 1.8 2005/06/22 00:04:49 steve * Reduce vvp_vector4 copies by using const references. * * Revision 1.7 2005/06/09 05:04:45 steve * Support UDP initial values. * * Revision 1.6 2005/06/02 16:02:11 steve * Add support for notif0/1 gates. * Make delay nodes support inertial delay. * Add the %force/link instruction. * * Revision 1.5 2005/05/14 19:43:23 steve * Move functor delays to vvp_delay_fun object. * * Revision 1.4 2005/04/03 05:45:51 steve * Rework the vvp_delay_t class. * */