//////////////////////////////////////////////////////////////////////////////// // // Filename: ddr3_controller.v // Project: UberDDR3 - An Open Source DDR3 Controller // // Purpose: This DDR3 controller was originally designed to be used on the // Network Switch Project (https://github.com/ZipCPU/eth10g). The Network Switch // project uses a Kintex 7 FPGA (XC7K160T-3FFG676E). // The goal will be to: // - Run this at 1600Mbps (Maximum Physical Interface (PHY) Rate for a 4:1 // memory controller based on "DC and AC Switching Characteristics" for Kintex 7) // - Parameterize everything // - Interface should be (nearly) bus agnostic // - High (sustained) data throughput. Sequential writes should be able to continue without interruption // // Engineer: Angelo C. Jacobo // //////////////////////////////////////////////////////////////////////////////// // // Copyright (C) 2023-2025 Angelo Jacobo // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // //////////////////////////////////////////////////////////////////////////////// // NOTE TO SELF are questions which I still need to answer // Comments are continuously added on this RTL for better readability //`define FORMAL_COVER //skip reset sequence during formal verification to fit in cover depth `default_nettype none `timescale 1ps / 1ps // // speed bin `define DDR3_1600_11_11_11 //`define DDR3_1333_9_9_9 //`define DDR3_1066_7_7_7 // module ddr3_controller #( parameter integer CONTROLLER_CLK_PERIOD = 10_000, //ps, clock period of the controller interface DDR3_CLK_PERIOD = 2_500, //ps, clock period of the DDR3 RAM device (must be 1/4 of the CONTROLLER_CLK_PERIOD) ROW_BITS = 14, //width of DDR3 row address COL_BITS = 10, //width of DDR3 column address BA_BITS = 3, //width of bank address DQ_BITS = 8, //device width LANES = 2, //number of DDR3 device to be controlled AUX_WIDTH = 16, //width of aux line (must be >= 4) WB2_ADDR_BITS = 7, //width of 2nd wishbone address bus WB2_DATA_BITS = 32, //width of 2nd wishbone data bus DUAL_RANK_DIMM = 0, // enable dual rank DIMM (1 = enable, 0 = disable) // DDR3 timing parameter values parameter SPEED_BIN = 3, // 0 = Use top-level parameters , 1 = DDR3-1066 (7-7-7) , 2 = DR3-1333 (9-9-9) , 3 = DDR3-1600 (11-11-11) SDRAM_CAPACITY = 5, // 0 = 256Mb, 1 = 512Mb, 2 = 1Gb, 3 = 2Gb, 4 = 4Gb, 5 = 8Gb, 6 = 16Gb TRCD = 13_750, // ps Active to Read/Write command time (only used if SPEED_BIN = 0) TRP = 13_750, // ps Precharge command period (only used if SPEED_BIN = 0) TRAS = 35_000, // ps ACT to PRE command period (only used if SPEED_BIN = 0) parameter[0:0] MICRON_SIM = 0, //enable faster simulation for micron ddr3 model (shorten POWER_ON_RESET_HIGH and INITIAL_CKE_LOW) ODELAY_SUPPORTED = 1, //set to 1 when ODELAYE2 is supported SECOND_WISHBONE = 0, //set to 1 if 2nd wishbone is needed WB_ERROR = 0, // set to 1 to support Wishbone error (asserts at ECC double bit error) parameter[1:0] BIST_MODE = 1, // 0 = No BIST, 1 = run through all address space ONCE , 2 = run through all address space for every test (burst w/r, random w/r, alternating r/w) parameter[1:0] ECC_ENABLE = 0, // set to 1 or 2 to add ECC (1 = Side-band ECC per burst, 2 = Side-band ECC per 8 bursts , 3 = Inline ECC ) (only change when you know what you are doing) parameter[1:0] DIC = 2'b00, //Output Driver Impedance Control (2'b00 = RZQ/6, 2'b01 = RZQ/7, RZQ = 240ohms) (only change when you know what you are doing) parameter[2:0] RTT_NOM = 3'b011, //RTT Nominal (3'b000 = disabled, 3'b001 = RZQ/4, 3'b010 = RZQ/2 , 3'b011 = RZQ/6, RZQ = 240ohms) parameter // The next parameters act more like a localparam (since user does not have to set this manually) but was added here to simplify port declaration serdes_ratio = 4, // this controller is fixed as a 4:1 memory controller (CONTROLLER_CLK_PERIOD/DDR3_CLK_PERIOD = 4) wb_data_bits = DQ_BITS*LANES*serdes_ratio*2, wb_addr_bits = ROW_BITS + COL_BITS + BA_BITS - $clog2(serdes_ratio*2) + DUAL_RANK_DIMM, wb_sel_bits = wb_data_bits / 8, wb2_sel_bits = WB2_DATA_BITS / 8, //4 is the width of a single ddr3 command {cs_n, ras_n, cas_n, we_n} plus 3 (ck_en, odt, reset_n) plus bank bits plus row bits cmd_len = 4 + 3 + BA_BITS + ROW_BITS + 2*DUAL_RANK_DIMM, lanes_clog2 = $clog2(LANES) == 0? 1: $clog2(LANES), parameter[1:0] row_bank_col = (ECC_ENABLE == 3)? 2 : 1, // memory address mapping: 0 {bank, row, col} , 1 = {row, bank, col} , 2 = {bank[2:1]. row, bank[0], col} FOR ECC parameter[0:0] ECC_TEST = 0 ) ( input wire i_controller_clk, //i_controller_clk has period of CONTROLLER_CLK_PERIOD input wire i_rst_n, //200MHz input clock // Wishbone inputs input wire i_wb_cyc, //bus cycle active (1 = normal operation, 0 = all ongoing transaction are to be cancelled) input wire i_wb_stb, //request a transfer input wire i_wb_we, //write-enable (1 = write, 0 = read) input wire[wb_addr_bits - 1:0] i_wb_addr, //burst-addressable {row,bank,col} input wire[wb_data_bits - 1:0] i_wb_data, //write data, for a 4:1 controller data width is 8 times the number of pins on the device input wire[wb_sel_bits - 1:0] i_wb_sel, //byte strobe for write (1 = write the byte) input wire[AUX_WIDTH - 1:0] i_aux, //for AXI-interface compatibility (given upon strobe) // Wishbone outputs output reg o_wb_stall, //1 = busy, cannot accept requests output wire o_wb_ack, //1 = read/write request has completed output wire o_wb_err, //1 = Error due to ECC double bit error (fixed to 0 if WB_ERROR = 0) output reg[wb_data_bits - 1:0] o_wb_data, //read data, for a 4:1 controller data width is 8 times the number of pins on the device output reg[AUX_WIDTH - 1:0] o_aux, //for AXI-interface compatibility (returned upon ack) // // Wishbone 2 (PHY) inputs /* verilator lint_off UNUSEDSIGNAL */ input wire i_wb2_cyc, //bus cycle active (1 = normal operation, 0 = all ongoing transaction are to be cancelled) input wire i_wb2_stb, //request a transfer input wire i_wb2_we, //write-enable (1 = write, 0 = read) input wire[WB2_ADDR_BITS - 1:0] i_wb2_addr, //memory-mapped register to be accessed input wire[wb2_sel_bits - 1:0] i_wb2_sel, //byte strobe for write (1 = write the byte) input wire[WB2_DATA_BITS - 1:0] i_wb2_data, //write data /* verilator lint_on UNUSEDSIGNAL */ // Wishbone 2 (Controller) outputs output reg o_wb2_stall, //1 = busy, cannot accept requests output reg o_wb2_ack, //1 = read/write request has completed output reg[WB2_DATA_BITS - 1:0] o_wb2_data, //read data // // PHY interface input wire[DQ_BITS*LANES*8 - 1:0] i_phy_iserdes_data, input wire[LANES*serdes_ratio*2 - 1:0] i_phy_iserdes_dqs, input wire[LANES*serdes_ratio*2 - 1:0] i_phy_iserdes_bitslip_reference, input wire i_phy_idelayctrl_rdy, output wire[cmd_len*serdes_ratio-1:0] o_phy_cmd, output reg o_phy_dqs_tri_control, o_phy_dq_tri_control, output wire o_phy_toggle_dqs, output wire[wb_data_bits-1:0] o_phy_data, output wire[wb_sel_bits-1:0] o_phy_dm, output wire[4:0] o_phy_odelay_data_cntvaluein, o_phy_odelay_dqs_cntvaluein, output wire[4:0] o_phy_idelay_data_cntvaluein, output wire[4:0] o_phy_idelay_dqs_cntvaluein, output reg[LANES-1:0] o_phy_odelay_data_ld, o_phy_odelay_dqs_ld, output reg[LANES-1:0] o_phy_idelay_data_ld, output reg[LANES-1:0] o_phy_idelay_dqs_ld, output reg[LANES-1:0] o_phy_bitslip, output reg o_phy_write_leveling_calib, output wire o_phy_reset, // Done Calibration pin (* mark_debug = "true" *) output wire o_calib_complete, // Debug port output wire [31:0] o_debug1, // output wire [31:0] o_debug2, // output wire [31:0] o_debug3 // User enabled self-refresh input wire i_user_self_refresh ); /************************************************************* Command Parameters *************************************************************/ //DDR3 commands {cs_n, ras_n, cas_n, we_n} (JEDEC DDR3 doc pg. 33 ) localparam[3:0]CMD_MRS = 4'b0000, // Mode Register Set CMD_REF = 4'b0001, // Refresh CMD_PRE = 4'b0010, // Precharge (A10-AP: 0 = Single Bank Precharge, 1 = Precharge All Banks) CMD_ACT = 4'b0011, // Bank Activate CMD_WR = 4'b0100, // Write (A10-AP: 0 = no Auto-Precharge) (A12-BC#: 1 = Burst Length 8) CMD_RD = 4'b0101, //Read (A10-AP: 0 = no Auto-Precharge) (A12-BC#: 1 = Burst Length 8) CMD_NOP = 4'b0111, // No Operation CMD_ZQC = 4'b0110, // ZQ Calibration (A10-AP: 0 = ZQ Calibration Short, 1 = ZQ Calibration Long) CMD_SREF_EN = 4'b0001, CMD_SREF_XT = 4'b0111; localparam RST_DONE = 27, // Command bit that determines if reset seqeunce had aready finished. non-persistent (only needs to be toggled once), REF_IDLE = 27, // No refresh is about to start and no ongoing refresh. (same bit as RST_DONE) USE_TIMER = 26, // Command bit that determines if timer will be used (if delay is zero, USE_TIMER must be LOW) A10_CONTROL = 25, //Command bit that determines if A10 AutoPrecharge will be high CLOCK_EN = 24, //Clock-enable to DDR3 RESET_N = 23, //Reset_n to DDR3 DDR3_CMD_START = 22, //Start of DDR3 command slot DDR3_CMD_END = 19, //end of DDR3 command slot MRS_BANK_START = 18; //start of bank value in MRS value // ddr3 command partitioning /* verilator lint_off UNUSEDPARAM */ localparam CMD_CS_N_2 = cmd_len - 1, CMD_CS_N = DUAL_RANK_DIMM[0]? cmd_len - 2 : cmd_len - 1, CMD_RAS_N = DUAL_RANK_DIMM[0]? cmd_len - 3 : cmd_len - 2, CMD_CAS_N = DUAL_RANK_DIMM[0]? cmd_len - 4 : cmd_len - 3, CMD_WE_N = DUAL_RANK_DIMM[0]? cmd_len - 5 : cmd_len - 4, CMD_ODT = DUAL_RANK_DIMM[0]? cmd_len - 6 : cmd_len - 5, CMD_CKE_2 = DUAL_RANK_DIMM[0]? cmd_len - 7 : cmd_len - 6, CMD_CKE = DUAL_RANK_DIMM[0]? cmd_len - 8 : cmd_len - 6, CMD_RESET_N = DUAL_RANK_DIMM[0]? cmd_len - 9 : cmd_len - 7, CMD_BANK_START = BA_BITS + ROW_BITS - 1, CMD_ADDRESS_START = ROW_BITS - 1; /* verilator lint_on UNUSEDPARAM */ localparam READ_SLOT = get_slot(CMD_RD), WRITE_SLOT = get_slot(CMD_WR), ACTIVATE_SLOT = get_slot(CMD_ACT), PRECHARGE_SLOT = get_slot(CMD_PRE), REMAINING_SLOT = get_slot(0); // Data does not have to be delayed (DQS is the on that has to be // delayed and center-aligned to the center eye of data) localparam DATA_INITIAL_ODELAY_TAP = 0; //Posedge of DQS needs to be aligned to the center eye of the data. //This means DQS needs to be delayed by a quarter of the ddr3 //clk period relative to the data. Subtract by 600ps to include //the IODELAY insertion delay. Divide by a delay resolution of //78.125ps per tap to get the needed tap value. Then add the tap //value used in data to have the delay relative to the data. localparam DQS_INITIAL_ODELAY_TAP = $rtoi(((DDR3_CLK_PERIOD/4))/78.125 + DATA_INITIAL_ODELAY_TAP); //Incoming DQS should be 90 degree delayed relative to incoming data localparam DATA_INITIAL_IDELAY_TAP = 0; //600ps delay localparam DQS_INITIAL_IDELAY_TAP = $rtoi(((DDR3_CLK_PERIOD/4))/78.125 + DATA_INITIAL_IDELAY_TAP); /*********************************************************************************************************************************************/ /********************************************************** Timing Parameters ***********************************************************************************/ localparam DELAY_SLOT_WIDTH = 19; //Bitwidth of the delay slot and mode register slot on the reset/refresh rom will be at the same size as the Mode Register localparam POWER_ON_RESET_HIGH = 200_000_000; // 200_000_000 ps (200 us) reset must be active at initialization localparam INITIAL_CKE_LOW = 500_000_000; // 500_000_000 ps (500 us) cke must be low before activating // ps Active to Read/Write command time localparam tRCD = (SPEED_BIN == 0) ? TRCD : // use top-level parameters (SPEED_BIN == 1) ? 13_750 : // DDR3-1066 (7-7-7) (SPEED_BIN == 2) ? 13_500 : // DDR3-1333 (9-9-9) (SPEED_BIN == 3) ? 13_750 : 13_750; // DDR3-1600 (11-11-11) // ps Precharge command period localparam tRP = (SPEED_BIN == 0) ? TRP : // use top-level parameters (SPEED_BIN == 1) ? 13_750 : // DDR3-1066 (7-7-7) (SPEED_BIN == 2) ? 13_500 : // DDR3-1333 (9-9-9) (SPEED_BIN == 3) ? 13_750 : 13_750; // DDR3-1600 (11-11-11) // ps ACT to PRE command period localparam tRAS = (SPEED_BIN == 0) ? TRAS : // use top-level parameters (SPEED_BIN == 1) ? 35_000 : // DDR3-1066 (7-7-7) (SPEED_BIN == 2) ? 36_000 : // DDR3-1333 (9-9-9) (SPEED_BIN == 3) ? 35_000 : 35_000; // DDR3-1600 (11-11-11) // ps Refresh command to ACT or REF localparam tRFC = ((SDRAM_CAPACITY == 4'b0000) || (SDRAM_CAPACITY == 4'b0001)) ? 90_000 : // 256Mb, 512Mb (SDRAM_CAPACITY == 4'b0010) ? 110_000 : // 1Gb (SDRAM_CAPACITY == 4'b0011) ? 160_000 : // 2Gb (SDRAM_CAPACITY == 4'b0100) ? 300_000 : // 4Gb (SDRAM_CAPACITY == 4'b0101) ? 350_000 : 350_000; // 8Gb localparam tREFI = 7_800_000; //ps Average periodic refresh interval localparam tXPR = max(5*DDR3_CLK_PERIOD, tRFC+10_000); // ps Exit Reset from CKE HIGH to a valid command localparam tWR = 15_000; // ps Write Recovery Time localparam tWTR = max(nCK_to_ps(4), 7_500); //ps Delay from start of internal write transaction to internal read command localparam tWLMRD = nCK_to_cycles(40); // nCK First DQS/DQS# rising edge after write leveling mode is programmed localparam tWLO = 9_000; //ps Write leveling output delay localparam tWLOE = 2_000; //ps Write leveling output error localparam tRTP = max(nCK_to_ps(4), 7_500); //ps Internal Command to PRECHARGE Command delay localparam tCCD = 4; //nCK CAS to CAS command delay /* verilator lint_off WIDTHEXPAND */ localparam tMOD = max(nCK_to_cycles(12), ps_to_cycles(15_000)); //cycles (controller) Mode Register Set command update delay localparam tZQinit = max(nCK_to_cycles(512), ps_to_cycles(640_000));//cycles (controller) Power-up and RESET calibration time /* verilator lint_on WIDTHEXPAND */ localparam CL_nCK = CL_generator(DDR3_CLK_PERIOD); //read latency (given in JEDEC DDR3 spec) localparam CWL_nCK = CWL_generator(DDR3_CLK_PERIOD); //write latency (given in JEDEC DDR3 spec) localparam DELAY_MAX_VALUE = ps_to_cycles(INITIAL_CKE_LOW); //Largest possible delay needed by the reset and refresh sequence localparam DELAY_COUNTER_WIDTH= $clog2(DELAY_MAX_VALUE); //Bitwidth needed by the maximum possible delay, this will be the delay counter width localparam CALIBRATION_DELAY = 2; // must be >= 2 localparam tXSDLL = nCK_to_cycles(512); // cycles (controller) Exit Self Refresh to commands requiring a locked DLL localparam tXSDLL_tRFC = tXSDLL - ps_to_cycles(tRFC); // cycles (controller) Time before refresh after exit from self-refresh localparam tCKE = max(3, ps_to_nCK(7500) ); // nCK CKE minimum pulse width localparam tCKESR = nCK_to_cycles(tCKE + 1)+ 5; // cycles (controller) Minimum time that the DDR3 SDRAM must remain in Self-Refresh mode is tCKESR localparam tCPDED = 5; // cycle (tCPDED is at most 2nCK but we make it to 1cycle or 4nCK) Command pass disable delay , required cycles of NOP after CKE low /*********************************************************************************************************************************************/ /********************************************************** Computed Delay Parameters **********************************************************/ /* verilator lint_off WIDTHEXPAND */ localparam[3:0] PRECHARGE_TO_ACTIVATE_DELAY = find_delay(ps_to_nCK(tRP), PRECHARGE_SLOT, ACTIVATE_SLOT); //3 localparam[3:0] ACTIVATE_TO_PRECHARGE_DELAY = find_delay(ps_to_nCK(tRAS), ACTIVATE_SLOT, PRECHARGE_SLOT); localparam[3:0] ACTIVATE_TO_WRITE_DELAY = find_delay(ps_to_nCK(tRCD), ACTIVATE_SLOT, WRITE_SLOT); //3 localparam[3:0] ACTIVATE_TO_READ_DELAY = find_delay(ps_to_nCK(tRCD), ACTIVATE_SLOT, READ_SLOT); //2 localparam[3:0] ACTIVATE_TO_ACTIVATE_DELAY = find_delay(ps_to_nCK(7500), ACTIVATE_SLOT, ACTIVATE_SLOT); //TRRD localparam[3:0] READ_TO_WRITE_DELAY = find_delay((CL_nCK + tCCD + 2 - CWL_nCK), READ_SLOT, WRITE_SLOT); //2 localparam[3:0] READ_TO_READ_DELAY = 0; localparam[3:0] READ_TO_PRECHARGE_DELAY = find_delay(ps_to_nCK(tRTP), READ_SLOT, PRECHARGE_SLOT); //1 localparam[3:0] WRITE_TO_WRITE_DELAY = 0; localparam[3:0] WRITE_TO_READ_DELAY = find_delay((CWL_nCK + 4 + ps_to_nCK(tWTR)), WRITE_SLOT, READ_SLOT); //4 localparam[3:0] WRITE_TO_PRECHARGE_DELAY = find_delay((CWL_nCK + 4 + ps_to_nCK(tWR)), WRITE_SLOT, PRECHARGE_SLOT); //5 /* verilator lint_on WIDTHEXPAND */ localparam PRE_REFRESH_DELAY = WRITE_TO_PRECHARGE_DELAY + 1; `ifdef FORMAL (*keep*) wire[3:0] f_PRECHARGE_TO_ACTIVATE_DELAY, f_ACTIVATE_TO_PRECHARGE_DELAY, f_ACTIVATE_TO_WRITE_DELAY, f_ACTIVATE_TO_READ_DELAY, f_ACTIVATE_TO_ACTIVATE_DELAY, f_READ_TO_WRITE_DELAY, f_READ_TO_READ_DELAY, f_READ_TO_PRECHARGE_DELAY, f_WRITE_TO_WRITE_DELAY, f_WRITE_TO_READ_DELAY, f_WRITE_TO_PRECHARGE_DELAY; assign f_PRECHARGE_TO_ACTIVATE_DELAY = PRECHARGE_TO_ACTIVATE_DELAY; assign f_ACTIVATE_TO_PRECHARGE_DELAY = ACTIVATE_TO_PRECHARGE_DELAY; assign f_ACTIVATE_TO_WRITE_DELAY = ACTIVATE_TO_WRITE_DELAY; assign f_ACTIVATE_TO_READ_DELAY = ACTIVATE_TO_READ_DELAY; assign f_READ_TO_WRITE_DELAY = READ_TO_WRITE_DELAY; assign f_READ_TO_READ_DELAY = READ_TO_READ_DELAY; assign f_READ_TO_PRECHARGE_DELAY = READ_TO_PRECHARGE_DELAY; assign f_WRITE_TO_WRITE_DELAY = WRITE_TO_WRITE_DELAY; assign f_WRITE_TO_READ_DELAY = WRITE_TO_READ_DELAY; assign f_WRITE_TO_PRECHARGE_DELAY = WRITE_TO_PRECHARGE_DELAY; assign f_ACTIVATE_TO_ACTIVATE_DELAY = ACTIVATE_TO_ACTIVATE_DELAY; `endif //MARGIN_BEFORE_ANTICIPATE is the number of columns before the column //end when the anticipate can start //the worst case scenario is when the anticipated bank needs to be precharged //thus the margin must satisfy tRP (for precharge) and tRCD (for activate). //Also, worscase is when the anticipated bank still has the leftover of the //WRITE_TO_PRECHARGE_DELAY thus consider also this. localparam MARGIN_BEFORE_ANTICIPATE = PRECHARGE_TO_ACTIVATE_DELAY + ACTIVATE_TO_WRITE_DELAY + WRITE_TO_PRECHARGE_DELAY; // STAGE2_DATA_DEPTH is the number of controller clk cycles of delay before issuing the data after the write command // depends on the CWL_nCK /* verilator lint_off WIDTHEXPAND */ localparam STAGE2_DATA_DEPTH = (CWL_nCK - (3 - WRITE_SLOT + 1))/4 + 1; //this is always >= 1 (5 - (3 - 3 + 1))/4.0 -> floor(1) + 1 = floor(4 /* verilator lint_on WIDTHEXPAND */ `ifdef FORMAL wire stage2_data_depth; assign stage2_data_depth = STAGE2_DATA_DEPTH; always @* begin assert(STAGE2_DATA_DEPTH-2 >= 0); end `endif localparam READ_DELAY = $rtoi($floor((CL_nCK - (3 - READ_SLOT + 1))/4.0 )); // how many controller clk cycles to satisfy CL_nCK of ddr3_clk cycles // READ_ACK_PIPE_WIDTH is the delay between read command issued (starting from the controller) until the data is received by the controller //the delays included the ODELAY and OSERDES when issuing the read command //and the IDELAY and ISERDES when receiving the data (NOTE TO SELF: ELABORATE ON WHY THOSE MAGIC NUMBERS) localparam READ_ACK_PIPE_WIDTH = READ_DELAY + 1 + 2 + 1 + 1; localparam MAX_ADDED_READ_ACK_DELAY = 16; localparam DELAY_BEFORE_WRITE_LEVEL_FEEDBACK = STAGE2_DATA_DEPTH + ps_to_cycles(tWLO+tWLOE) + 10; //plus 10 controller clocks for possible bus latency and the delay for receiving feedback DQ from IOBUF -> IDELAY -> ISERDES localparam ECC_INFORMATION_BITS = (ECC_ENABLE == 2)? max_information_bits(wb_data_bits) : max_information_bits(wb_data_bits/8); localparam SIM_ADDRESS_INCR_LOG2 = wb_addr_bits-2-7; // 2^(wb_addr_bits-2)/128 /*********************************************************************************************************************************************/ /********************************************************** Read/Write Calibration Parameters **********************************************************/ localparam IDLE = 0, BITSLIP_DQS_TRAIN_1 = 1, MPR_READ = 2, COLLECT_DQS = 3, ANALYZE_DQS = 4, CALIBRATE_DQS = 5, BITSLIP_DQS_TRAIN_2 = 6, START_WRITE_LEVEL = 7, WAIT_FOR_FEEDBACK = 8, ISSUE_WRITE_1 = 9, ISSUE_WRITE_2 = 10, ISSUE_READ = 11, //ISSUE_READ_2 = 12, READ_DATA = 12, ANALYZE_DATA = 13, CHECK_STARTING_DATA = 14, BITSLIP_DQS_TRAIN_3 = 15, //WRITE_ZERO = 16, BURST_WRITE = 17, BURST_READ = 18, RANDOM_WRITE = 19, RANDOM_READ = 20, ALTERNATE_WRITE_READ = 21, FINISH_READ = 22, DONE_CALIBRATE = 23; localparam STORED_DQS_SIZE = 5, //must be >= 2 REPEAT_DQS_ANALYZE = 1, REPEAT_CLK_SAMPLING = 5; // repeat DQS read to find the accurate starting position of DQS /*********************************************************************************************************************************************/ /************************************************************* Set Mode Registers Parameters *************************************************************/ // MR2 (JEDEC DDR3 doc pg. 30) localparam[2:0] PASR = 3'b000; //Partial Array Self-Refresh: Full Array localparam[3:0] CWL = CWL_nCK-4'd5; //CAS write Latency localparam[0:0] ASR = 1'b1; //Auto Self-Refresh: on localparam[0:0] SRT = 1'b0; //Self-Refresh Temperature Range:0 (If ASR = 1, SRT bit must be set to 0) localparam[1:0] RTT_WR = 2'b00; //Dynamic ODT: off localparam[2:0] MR2_SEL = 3'b010; //Selected Mode Register localparam[18:0] MR2 = {MR2_SEL, 5'b00000, RTT_WR, 1'b0, SRT, ASR, CWL[2:0], PASR}; // MR3 (JEDEC DDR3 doc pg. 32) localparam[1:0] MPR_LOC = 2'b00; //Data location for MPR Reads: Predefined Pattern 0_1_0_1_0_1_0_1 localparam[0:0] MPR_EN = 1'b1; //MPR Enable: Enable MPR reads and calibration during initialization localparam[2:0] MR3_SEL = 3'b011; //MPR Selected localparam[18:0] MR3_MPR_EN = {MR3_SEL, 13'b0_0000_0000_0000, MPR_EN, MPR_LOC}; localparam[18:0] MR3_MPR_DIS = {MR3_SEL, 13'b0_0000_0000_0000, !MPR_EN, MPR_LOC}; // MR1 (JEDEC DDR3 doc pg. 27) localparam DLL_EN = 1'b0; //DLL Enable/Disable: Enabled(0) // localparam[1:0] DIC = 2'b01; //Output Driver Impedance Control (RZQ/7) (elevate this to parameter) // localparam[2:0] RTT_NOM = 3'b001; //RTT Nominal: RZQ/4 (elevate this to parameter) localparam[0:0] WL_EN = 1'b1; //Write Leveling Enable: Disabled localparam[1:0] AL = 2'b00; //Additive Latency: Disabled localparam[0:0] TDQS = 1'b0; //Termination Data Strobe: Disabled (provides additional termination resistance outputs. //When the TDQS function is disabled, the DM function is provided (vice-versa).TDQS function is only //available for X8 DRAM and must be disabled for X4 and X16. localparam[0:0] QOFF = 1'b0; //Output Buffer Control: Enabled localparam[2:0] MR1_SEL = 3'b001; //Selected Mode Register localparam[18:0] MR1_WL_EN = {MR1_SEL, 3'b000, QOFF, TDQS, 1'b0, RTT_NOM[2], 1'b0, WL_EN, RTT_NOM[1], DIC[1], AL, RTT_NOM[0], DIC[0], DLL_EN}; localparam[18:0] MR1_WL_DIS = {MR1_SEL, 3'b000, QOFF, TDQS, 1'b0, RTT_NOM[2], 1'b0, !WL_EN, RTT_NOM[1], DIC[1], AL, RTT_NOM[0], DIC[0], DLL_EN}; //MR0 (JEDEC DDR3 doc pg. 24) localparam[1:0] BL = 2'b00; //Burst Length: 8 (Fixed) localparam[3:0] CL = (CL_nCK-4)*2; //CAS Read Latency localparam[0:0] RBT = 1'b0; //Read Burst Type: Nibble Sequential localparam[0:0] DLL_RST = 1'b1; //DLL Reset: Yes (this is self-clearing and must be applied after DLL enable) localparam[2:0] WR = WRA_mode_register_value($rtoi($ceil(tWR/DDR3_CLK_PERIOD))); //Write recovery for autoprecharge ( localparam[0:0] PPD = 1'b0; //DLL Control for Precharge PD: Slow exit (DLL off) localparam[2:0] MR0_SEL = 3'b000; localparam[18:0] MR0 = {MR0_SEL, 3'b000, PPD, WR, DLL_RST, 1'b0, CL[3:1], RBT, CL[0], BL}; /*********************************************************************************************************************************************/ localparam INITIAL_RESET_INSTRUCTION = {5'b01000 , CMD_NOP , { {(DELAY_SLOT_WIDTH-3){1'b0}} , 3'd5} }; /************************************************************* Registers and Wires *************************************************************/ integer index; (* mark_debug ="true" *) reg[4:0] instruction_address = 0; //address for accessing rom instruction reg[27:0] instruction = INITIAL_RESET_INSTRUCTION; //instruction retrieved from reset instruction rom reg[ DELAY_COUNTER_WIDTH - 1:0] delay_counter = INITIAL_RESET_INSTRUCTION[DELAY_COUNTER_WIDTH - 1:0]; //counter used for delays reg delay_counter_is_zero = (INITIAL_RESET_INSTRUCTION[DELAY_COUNTER_WIDTH - 1:0] == 0); //counter is now zero so retrieve next delay reg reset_done = 0; //high if reset has already finished reg pause_counter = 0; wire issue_read_command; reg stage2_update = 1; reg stage2_stall = 0; reg stage1_stall = 0; reg[(1<<(BA_BITS+DUAL_RANK_DIMM))-1:0] bank_status_q, bank_status_d; //bank_status[bank_number]: determine current state of bank (1=active , 0=idle) //bank_active_row[bank_number] = stores the active row address in the specified bank reg[ROW_BITS-1:0] bank_active_row_q[(1<<(BA_BITS+DUAL_RANK_DIMM))-1:0], bank_active_row_d[(1<<(BA_BITS+DUAL_RANK_DIMM))-1:0]; // ECC_ENABLE = 3 regs /* verilator lint_off UNUSEDSIGNAL */ reg[BA_BITS-1:0] ecc_bank_addr = 0, ecc_bank_addr_prev = 0; reg[ROW_BITS-1:0] ecc_row_addr = 0, ecc_row_addr_prev = 0; reg[COL_BITS-1:0] ecc_col_addr = 0, ecc_col_addr_prev = 0; reg we_prev; reg stage0_pending = 0; reg[wb_addr_bits - 1:0] stage0_addr = 0; reg[AUX_WIDTH-1:0] stage0_aux = 0; reg stage0_we = 0; reg[wb_data_bits - 1:0] stage0_data = 0; wire ecc_stage1_stall; reg ecc_stage2_stall; wire stage1_update, stage1_update_calib, stage0_update; reg wb_stb_mux = 0; reg[AUX_WIDTH-1:0] aux_mux = 0; reg wb_we_mux = 0; reg[wb_addr_bits - 1:0] wb_addr_mux = 0; reg[wb_data_bits - 1:0] wb_data_mux = 0; reg[wb_addr_bits-1:0] calib_addr_mux; reg[wb_data_bits-1:0] calib_data_mux; reg calib_stb_mux; reg calib_we_mux; reg[AUX_WIDTH-1:0] calib_aux_mux; reg write_ecc_stored_to_mem_q, write_ecc_stored_to_mem_d; reg[wb_data_bits - 1:0] stage2_ecc_write_data_q = 0, stage2_ecc_write_data_d; reg[wb_data_bits - 1:0] stage2_ecc_read_data_q = 0, stage2_ecc_read_data_d; reg[wb_sel_bits - 1 : 0] stage2_ecc_write_data_mask_q = 0, stage2_ecc_write_data_mask_d; wire[wb_data_bits/8 - 1 : 0] decoded_parity; wire[wb_data_bits/8 - 1 : 0] encoded_parity; reg[wb_data_bits/8 - 1 : 0] stage2_encoded_parity = 0; reg ecc_req_stage2 = 0; /* verilator lint_on UNUSEDSIGNAL */ //pipeline stage 1 regs reg stage1_pending = 0; reg[AUX_WIDTH-1:0] stage1_aux = 0; reg stage1_we = 0; reg[wb_data_bits - 1:0] stage1_data = 0; wire[wb_data_bits - 1:0] stage1_data_mux, stage1_data_encoded; reg[wb_sel_bits - 1:0] stage1_dm = 0; reg[COL_BITS-1:0] stage1_col = 0; reg[BA_BITS-1+DUAL_RANK_DIMM:0] stage1_bank = 0; reg[ROW_BITS-1:0] stage1_row = 0; reg[BA_BITS-1+DUAL_RANK_DIMM:0] stage1_next_bank = 0; reg[ROW_BITS-1:0] stage1_next_row = 0; wire[wb_addr_bits-1:0] wb_addr_plus_anticipate, calib_addr_plus_anticipate; //pipeline stage 2 regs reg stage2_pending = 0; reg[AUX_WIDTH-1:0] stage2_aux = 0; reg stage2_we = 0; reg[wb_sel_bits - 1:0] stage2_dm_unaligned = 0, stage2_dm_unaligned_temp = 0; reg[wb_sel_bits - 1:0] stage2_dm[STAGE2_DATA_DEPTH-1:0]; reg[wb_data_bits - 1:0] stage2_data_unaligned = 0, stage2_data_unaligned_temp = 0; reg[wb_data_bits - 1:0] stage2_data[STAGE2_DATA_DEPTH-1:0]; reg [DQ_BITS*8 - 1:0] unaligned_data[LANES-1:0]; reg [8 - 1:0] unaligned_dm[LANES-1:0]; reg[COL_BITS-1:0] stage2_col = 0; reg[BA_BITS-1+DUAL_RANK_DIMM:0] stage2_bank = 0; reg[ROW_BITS-1:0] stage2_row = 0; //delay counter for every banks reg[3:0] delay_before_precharge_counter_q[(1<<(BA_BITS+DUAL_RANK_DIMM))-1:0], delay_before_precharge_counter_d[(1<<(BA_BITS+DUAL_RANK_DIMM))-1:0]; //delay counters reg[3:0] delay_before_activate_counter_q[(1<<(BA_BITS+DUAL_RANK_DIMM))-1:0], delay_before_activate_counter_d[(1<<(BA_BITS+DUAL_RANK_DIMM))-1:0] ; reg[3:0] delay_before_write_counter_q[(1<<(BA_BITS+DUAL_RANK_DIMM))-1:0], delay_before_write_counter_d[(1<<(BA_BITS+DUAL_RANK_DIMM))-1:0] ; reg[3:0] delay_before_read_counter_q[(1<<(BA_BITS+DUAL_RANK_DIMM))-1:0] , delay_before_read_counter_d[(1<<(BA_BITS+DUAL_RANK_DIMM))-1:0] ; //commands to be sent to PHY (4 slots per controller clk cycle) reg[cmd_len-1:0] cmd_d[3:0]; initial begin o_phy_bitslip = 0; end reg cmd_odt_q = 0, cmd_odt, cmd_reset_n; reg[DUAL_RANK_DIMM:0] cmd_ck_en, prev_cmd_ck_en; reg o_wb_stall_q = 1, o_wb_stall_d, o_wb_stall_calib = 1; reg precharge_slot_busy; reg activate_slot_busy; reg[1:0] write_dqs_q; reg write_dqs_d; reg[STAGE2_DATA_DEPTH:0] write_dqs; reg[STAGE2_DATA_DEPTH:0] write_dqs_val; reg[1:0] write_dq_q; reg write_dq_d; reg[STAGE2_DATA_DEPTH+1:0] write_dq; (* mark_debug = "true" *) reg[$clog2(DONE_CALIBRATE)-1:0] state_calibrate; reg[STORED_DQS_SIZE*8-1:0] dqs_store = 0; reg[$clog2(STORED_DQS_SIZE)-1:0] dqs_count_repeat = 0; reg[$clog2(STORED_DQS_SIZE*8)-1:0] dqs_start_index = 0; reg[$clog2(STORED_DQS_SIZE*8)-1:0] dqs_start_index_stored = 0; reg[$clog2(STORED_DQS_SIZE*8)-1:0] dqs_target_index = 0; reg[$clog2(STORED_DQS_SIZE*8)-1:0] dqs_target_index_orig = 0; reg[$clog2(STORED_DQS_SIZE*8):0] dq_target_index[LANES-1:0]; wire[$clog2(STORED_DQS_SIZE*8)-1:0] dqs_target_index_value; reg[$clog2(REPEAT_DQS_ANALYZE):0] dqs_start_index_repeat=0; reg[3:0] train_delay; reg[3:0] delay_before_read_data = 0; reg[$clog2(DELAY_BEFORE_WRITE_LEVEL_FEEDBACK):0] delay_before_write_level_feedback = 0; reg initial_dqs = 0; (* mark_debug = "true" *) reg[lanes_clog2-1:0] lane = 0; reg[$clog2(8*LANES)-1:0] lane_times_8 = 0; /* verilator lint_off UNUSEDSIGNAL */ reg[15:0] dqs_bitslip_arrangement = 0; /* verilator lint_off UNUSEDSIGNAL */ reg[3:0] added_read_pipe_max = 0; reg[3:0] added_read_pipe[LANES - 1:0]; //each lane will have added delay relative to when ISERDES should actually return the data //this make sure that we will wait until the lane with longest delay (added_read_pipe_max) is received before //all lanes are sent to wishbone data //contains the ack shift reg for both read and write reg[AUX_WIDTH:0] shift_reg_read_pipe_q[READ_ACK_PIPE_WIDTH-1:0]; reg[AUX_WIDTH:0] shift_reg_read_pipe_d[READ_ACK_PIPE_WIDTH-1:0]; //issue ack and AUX value , 1=issue command delay (OSERDES delay), 2 = ISERDES delay reg[$clog2(READ_ACK_PIPE_WIDTH-1):0] write_ack_index_q = 1, write_ack_index_d = 1; reg index_read_pipe; //tells which delay_read_pipe will be updated (there are two delay_read_pipe) reg index_wb_data; //tells which o_wb_data_q will be sent to o_wb_data reg[15:0] delay_read_pipe[1:0]; //delay when each lane will retrieve i_phy_iserdes_data (since different lanes might not be aligned with each other and needs to be retrieved at a different time) reg[wb_data_bits - 1:0] o_wb_data_q[1:0]; //store data retrieved from i_phy_iserdes_data to be sent to o_wb_data wire[wb_data_bits - 1:0] o_wb_data_q_current; reg[wb_data_bits - 1:0] o_wb_data_q_q; reg[wb_data_bits - 1:0] o_wb_data_uncalibrated; reg o_wb_ack_q = 0; reg o_wb_err_q; reg o_wb_ack_uncalibrated = 0; reg[AUX_WIDTH:0] o_wb_ack_read_q[MAX_ADDED_READ_ACK_DELAY-1:0]; reg calib_stb = 0; reg[wb_sel_bits-1:0] calib_sel = 0; reg[AUX_WIDTH-1:0] calib_aux = 0; reg calib_we = 0; reg[wb_addr_bits-1:0] calib_addr = 0; reg[wb_data_bits-1:0] calib_data = 0; wire[wb_data_bits-1:0] calib_data_randomized; reg write_calib_odt = 0; reg write_calib_dqs = 0; reg write_calib_dq = 0; reg prev_write_level_feedback = 1; reg[wb_data_bits-1:0] read_data_store = 0; reg[127:0] write_pattern = 0; reg[$clog2(64):0] data_start_index[LANES-1:0]; reg[LANES-1:0] lane_write_dq_late = 0; reg[LANES-1:0] lane_read_dq_early = 0; reg[4:0] odelay_data_cntvaluein[LANES-1:0]; reg[4:0] odelay_dqs_cntvaluein[LANES-1:0]; reg[4:0] idelay_data_cntvaluein[LANES-1:0]; reg[4:0] idelay_data_cntvaluein_prev; reg[4:0] idelay_dqs_cntvaluein[LANES-1:0]; reg[$clog2(REPEAT_CLK_SAMPLING):0] sample_clk_repeat = 0; reg stored_write_level_feedback = 0; reg[5:0] start_index_check = 0; reg[63:0] read_lane_data = 0; reg odelay_cntvalue_halfway = 0; reg initial_calibration_done = 0; reg final_calibration_done = 0; assign o_calib_complete = final_calibration_done; // Wishbone 2 reg wb2_stb = 0; reg wb2_update = 0; reg wb2_we = 0; reg[WB2_ADDR_BITS-1:0] wb2_addr = 0; reg[WB2_DATA_BITS-1:0] wb2_data = 0; reg[wb2_sel_bits-1:0] wb2_sel = 0; reg[4:0] wb2_phy_odelay_data_cntvaluein = 0; reg[4:0] wb2_phy_odelay_dqs_cntvaluein = 0; reg[4:0] wb2_phy_idelay_data_cntvaluein = 0; reg[4:0] wb2_phy_idelay_dqs_cntvaluein = 0; reg[LANES-1:0] wb2_phy_odelay_data_ld = 0; reg[LANES-1:0] wb2_phy_odelay_dqs_ld = 0; reg[LANES-1:0] wb2_phy_idelay_data_ld = 0; reg[LANES-1:0] wb2_phy_idelay_dqs_ld = 0; (* mark_debug ="true" *)reg[LANES-1:0] write_level_fail = 0; reg[lanes_clog2-1:0] wb2_write_lane = 0; reg sync_rst_wb2 = 0, sync_rst_controller = 0, current_rank_rst = 0; reg reset_from_wb2 = 0, reset_from_calibrate = 0, reset_from_test = 0, repeat_test = 0; reg reset_after_rank_1 = 0; // reset after calibration rank 1 to switch to rank 2 reg current_rank = 0; // test calibration (* mark_debug = "true" *) reg[wb_addr_bits:0] read_test_address_counter = 0, check_test_address_counter = 0; //////////////////////////////////////////////////////// (* mark_debug = "true" *) reg[wb_addr_bits:0] write_test_address_counter = 0; (* mark_debug = "true" *) reg[31:0] correct_read_data = 0, wrong_read_data = 0; /* verilator lint_off UNDRIVEN */ wire sb_err_o; wire db_err_o; wire[wb_data_bits - 1:0] o_wb_data_q_decoded; reg user_self_refresh_q; // registered i_user_self_refresh // initial block for all regs initial begin o_wb_stall = 1; for(index = 0; index < MAX_ADDED_READ_ACK_DELAY; index = index + 1) begin o_wb_ack_read_q[index] = 0; end for(index=0; index < (1<<(BA_BITS+DUAL_RANK_DIMM)); index=index+1) begin bank_status_q[index] = 0; bank_status_d[index] = 0; bank_active_row_q[index] = 0; bank_active_row_d[index] = 0; end for(index = 0; index < STAGE2_DATA_DEPTH; index = index+1) begin stage2_data[index] = 0; stage2_dm[index] = 0; end for(index=0; index <(1<<(BA_BITS+DUAL_RANK_DIMM)); index=index+1) begin delay_before_precharge_counter_q[index] = 0; delay_before_activate_counter_q[index] = 0; delay_before_write_counter_q[index] = 0; delay_before_read_counter_q[index] = 0; end for(index = 0; index < READ_ACK_PIPE_WIDTH; index = index + 1) begin shift_reg_read_pipe_q[index] = 0; shift_reg_read_pipe_d[index] = 0; end //set all commands to all 1's makig CS_n high (thus commands are initially NOP) for(index=0; index < 4; index=index+1) begin cmd_d[index] = -1; end for(index = 0; index < LANES; index = index + 1) begin odelay_data_cntvaluein[index] = DATA_INITIAL_ODELAY_TAP[4:0]; odelay_dqs_cntvaluein[index] = DQS_INITIAL_ODELAY_TAP[4:0]; idelay_data_cntvaluein[index] = DATA_INITIAL_IDELAY_TAP[4:0]; idelay_dqs_cntvaluein[index] = DQS_INITIAL_IDELAY_TAP[4:0]; dq_target_index[index] = 0; data_start_index[index] = 0; end end /*********************************************************************************************************************************************/ /******************************************* Reset Sequence (JEDEC DDR3 doc pg. 19) *******************************************/ // This reset and refresh sequence logic is designed for simplicity. This uses a Read-Only Memory (ROM)) // to store the commands and time delay. A constant function is used store instructions instead of registers // to ensure that ROM wil not change values during formal verification induction. // This idea is sourced from https://zipcpu.com/formal/2019/11/18/genuctrlr.html // Instruction format: // RST_DONE/REF_IDLE = 27; //RST_DONE = non-persistent, only needs to be toggled once, command bit that determines if reset seqeunce had aready finished //REF_IDLE = No refresh is about to start and no ongoing refresh. // USE_TIMER = 26; // Command bit that determines if timer will be used (if delay is zero, USE_TIMER must be LOW) // A10_CONTROL = 25, //Command bit that determines if A10 Precharge All Bank will be high // CLOCK_EN = 24; //Clock-enable to DDR3 // RESET_N = 23; //Reset_n to DDR3 // DDR3_CMD = 22:19 // Timer-Delay or MRS = 18:0 //timer delay and MRS shares same slot, thus MRS commands cannot have delays // NOTE: The timer delay is a delay in clock cycles AFTER EXECUTING COMMAND, not the ACTUAL CYCLES of the command // (delay of 1 means 2 clock cycles of command execution) //initial reset instruction has low rst_n, low cke, and has delay of 5 function [27:0] read_rom_instruction(input[4:0] func_instruction_address); begin case(func_instruction_address) 5'd0: if (MICRON_SIM) read_rom_instruction = {5'b01000 , CMD_NOP , ps_to_cycles(POWER_ON_RESET_HIGH/500)}; else read_rom_instruction = {5'b01000 , CMD_NOP , ps_to_cycles(POWER_ON_RESET_HIGH)}; //0. RESET# needs to be maintained low for minimum 200us with power-up initialization. CKE is pulled //“Low�? anytime before RESET# being de-asserted (min. time 10 ns). . 5'd1: if (MICRON_SIM) read_rom_instruction = {5'b01001 , CMD_NOP, ps_to_cycles(INITIAL_CKE_LOW/500)}; else read_rom_instruction = {5'b01001 , CMD_NOP, ps_to_cycles(INITIAL_CKE_LOW)}; //1. After RESET# is de-asserted, wait for another 500 us until CKE becomes active. During this time, the //DRAM will start internal state initialization; this will be done independently of external clocks. // .... Also, a NOP or Deselect command must be registered (with tIS set up time to clock) before //CKE goes active. 5'd2: read_rom_instruction = {5'b01011 , CMD_NOP, ps_to_cycles(tXPR)}; //2. After CKE is being registered high, wait minimum of Reset CKE Exit time, tXPR. 5'd3: read_rom_instruction = {{2'b00,MR2[10], 2'b11}, CMD_MRS, MR2}; //3. Issue MRS command to load MR2. 5'd4: read_rom_instruction = {{2'b00,MR3_MPR_DIS[10], 2'b11}, CMD_MRS, MR3_MPR_DIS}; //4. All banks must first be in the idle state (all banks precharged and tRP met) before doing MPR calibration, thus issue first disabled MR3 5'd5: read_rom_instruction = {{2'b00,MR1_WL_DIS[10], 2'b11}, CMD_MRS, MR1_WL_DIS}; //5. Issue MRS command to load MR1, enable DLL,and disable WL. 5'd6: read_rom_instruction = {{2'b00,MR0[10], 2'b11}, CMD_MRS, MR0}; //6. Issue MRS command to load MR0 and reset DLL. 5'd7: read_rom_instruction = {5'b01011, CMD_NOP, tMOD[DELAY_SLOT_WIDTH-1:0]}; //7. Delay of tMOD between MRS command to a non-MRS command excluding NOP and DES 5'd8: read_rom_instruction = {5'b01111, CMD_ZQC, tZQinit[DELAY_SLOT_WIDTH-1:0]}; //8. ZQ Calibration command is used to calibrate DRAM Ron & ODT values. ZQCL command triggers the calibration engine //inside the DRAM and, once calibration is achieved, the calibrated values area transferred from the calibration engine to //DRAM IO, which gets reflected as updated output driver // Precharge all banks before enabling MPR 5'd9: read_rom_instruction = {5'b01111, CMD_PRE, ps_to_cycles(tRP)}; //9. All banks must be precharged (A10-AP = high) and idle for a minimum of the precharge time tRP(min) before the Refresh Command can be applied. 5'd10: read_rom_instruction = {{2'b00,MR3_MPR_EN[10], 2'b11}, CMD_MRS, MR3_MPR_EN}; //10. Issue MRS command to load MR3. Prior to enabling the MPR for read calibration, all banks must be in the idle state (all banks // precharged and tRP met). Once the MPR is enabled, any subsequent RD or RDA commands will be redirected to the MultiPurpose Register. 5'd11: read_rom_instruction = {5'b01011, CMD_NOP, tMOD[DELAY_SLOT_WIDTH-1:0]}; //11. Delay of tMOD between MRS command to a non-MRS command excluding NOP and DES 5'd12: read_rom_instruction = {5'b01011, CMD_NOP, CALIBRATION_DELAY[DELAY_SLOT_WIDTH-1:0]}; //12. Delay for read calibration 5'd13: read_rom_instruction = {{2'b00,MR3_MPR_DIS[10], 2'b11}, CMD_MRS, MR3_MPR_DIS}; //13. Disable MPR after read calibration 5'd14: read_rom_instruction = {{2'b00,MR1_WL_EN[10], 2'b11}, CMD_MRS, MR1_WL_EN}; //14. Issue MRS command to load MR1, and enable WL. 5'd15: read_rom_instruction = {5'b01011, CMD_NOP, tWLMRD[DELAY_SLOT_WIDTH-1:0]}; //15. Delay of tMOD between MRS command to a non-MRS command excluding NOP and DES 5'd16: read_rom_instruction = {5'b01011, CMD_NOP, CALIBRATION_DELAY[DELAY_SLOT_WIDTH-1:0]}; //16. Delay for write calibration 5'd17: read_rom_instruction = {{2'b00,MR1_WL_DIS[10], 2'b11}, CMD_MRS, MR1_WL_DIS}; //17. Issue MRS command to load MR1, and disable WL. 5'd18: read_rom_instruction = {5'b01011, CMD_NOP, tMOD[DELAY_SLOT_WIDTH-1:0]}; //18. Delay of tMOD between MRS command to a non-MRS command excluding NOP and DES // Perform first refresh and any subsequent refresh (so instruction 19 to 22 will be re-used for the refresh sequence) 5'd19: read_rom_instruction = {5'b01111, CMD_PRE, ps_to_cycles(tRP)}; //19. All banks must be precharged (A10-AP = high) and idle for a minimum of the precharge time tRP(min) before the Refresh Command can be applied. 5'd20: read_rom_instruction = {5'b01011, CMD_REF, ps_to_cycles(tRFC)}; //20. A delay between the Refresh Command and the next valid command, except NOP or DES, must be greater than or equal to the minimum //Refresh cycle time tRFC(min) 5'd21: read_rom_instruction = {5'b11011, CMD_NOP, ps_to_cycles(tREFI)}; //21. Reset ends now. The refresh interval also starts to count. 5'd22: read_rom_instruction = {5'b01011, CMD_NOP, PRE_REFRESH_DELAY[DELAY_SLOT_WIDTH-1:0]}; // 22. Extra delay needed before starting the refresh sequence. // (this already sets the wishbone stall high to make sure no user request is on-going when refresh seqeunce starts) 5'd23: read_rom_instruction = {5'b01111, CMD_PRE, ps_to_cycles(tRP)}; // 23. All banks must be precharged (A10-AP = high) and idle for a minimum of the precharge time tRP(min) before the Self-Refresh Command can be applied. 5'd24: read_rom_instruction = {5'b01001, CMD_SREF_EN, tCKESR[DELAY_SLOT_WIDTH-1:0]}; // 24. Self-refresh entry // JEDEC Standard No. 79-3E Page 79: The minimum time that the DDR3 SDRAM must remain in Self-Refresh mode is tCKESR 5'd25: read_rom_instruction = {5'b01001, CMD_NOP, tCPDED[DELAY_SLOT_WIDTH-1:0]}; // 25. tCPDED cycles of NOP are required after CKE low 5'd26: read_rom_instruction = {5'b01011, CMD_SREF_XT, tXSDLL_tRFC[DELAY_SLOT_WIDTH-1:0]}; // 26. From 25 (Self-refresh entry), wait until user-self_refresh is disabled then wait for tXSDLL - tRFC before going to 20 (Refresh) // JEDEC Standard No. 79-3E Page 79: Before a command that requires a locked DLL can be applied, a delay of at least tXSDLL must be satisfied. // JEDEC Standard No. 79-3E Page 80: Upon exit from Self-Refresh, the DDR3 SDRAM requires a minimum of one extra refresh command before it is put back into Self-Refresh Mode. default: read_rom_instruction = {5'b00011, CMD_NOP, {(DELAY_SLOT_WIDTH){1'b0}}}; endcase end endfunction /*********************************************************************************************************************************************/ /******************************************* Reset Sequence ROM Controller *******************************************/ always @(posedge i_controller_clk) begin sync_rst_controller <= !i_rst_n || reset_from_wb2 || reset_from_calibrate || reset_from_test || reset_after_rank_1; current_rank_rst <= !i_rst_n || reset_from_wb2 || reset_from_calibrate || reset_from_test; sync_rst_wb2 <= !i_rst_n; end assign o_phy_reset = current_rank_rst; // PHY will not reset when transitioning from rank 0 to rank 1 always @(posedge i_controller_clk) begin if(sync_rst_controller) begin instruction_address <= 0; `ifdef FORMAL_COVER instruction_address <= 21; `endif instruction <= INITIAL_RESET_INSTRUCTION; delay_counter <= INITIAL_RESET_INSTRUCTION[DELAY_COUNTER_WIDTH - 1:0]; delay_counter_is_zero <= (INITIAL_RESET_INSTRUCTION[DELAY_COUNTER_WIDTH - 1:0] == 0); reset_done <= 1'b0; end else begin //update counter after reaching zero if(delay_counter_is_zero) begin delay_counter <= instruction[DELAY_COUNTER_WIDTH - 1:0]; //retrieve delay value of current instruction, we count to zero thus minus 1 end //else: decrement delay counter when current instruction needs delay //don't decrement (has infinite time) when last bit of //delay_counter is 1 (for r/w calibration and prestall delay) //address will only move forward for these kinds of delay only //when skip_reset_seq_delay is toggled else if(instruction[USE_TIMER] /*&& delay_counter != {(DELAY_COUNTER_WIDTH){1'b1}}*/ && !pause_counter && delay_counter != 0) delay_counter <= delay_counter - 1; //delay_counter of 1 means we will need to update the delay_counter next clock cycle (delay_counter of zero) so we need to retrieve //now the next instruction. The same thing needs to be done when current instruction does not need the timer delay. if( ((delay_counter == 1) && !pause_counter) || !instruction[USE_TIMER]/* || skip_reset_seq_delay*/) begin delay_counter_is_zero <= 1; instruction <= read_rom_instruction(instruction_address); if(instruction_address == 5'd22) begin // if user_self_refresh is disabled, wrap back to 19 (Precharge All before Refresh) instruction_address <= 5'd19; end else if(instruction_address == 5'd26) begin // self-refresh exit always wraps back to 20 (Refresh) instruction_address <= 5'd20; end else begin instruction_address <= instruction_address + 5'd1; // just increment address end end //we are now on the middle of a delay else begin delay_counter_is_zero <=0; end if(instruction_address == 5'd22 && user_self_refresh_q) begin // if user_self_refresh is enabled, go straight to 23 instruction_address <= 23; // go to Precharge All for Self-refresh delay_counter_is_zero <= 1; delay_counter <= 0; instruction <= read_rom_instruction(instruction_address); end //instruction[RST_DONE] is non-persistent thus we need to register it once it goes high reset_done <= instruction[RST_DONE]? 1'b1:reset_done; end end // register user-enabled self-refresh always @(posedge i_controller_clk) begin user_self_refresh_q <= i_user_self_refresh && (user_self_refresh_q || (instruction_address != 5'd26)) && final_calibration_done; //will not go high again if already at instruction_address 26 (self-refresh exit), only go high when calibration is done if(DUAL_RANK_DIMM[0]) begin // if dual rank enabled, then enable self refresh right after completing calibration if(state_calibrate == FINISH_READ) begin user_self_refresh_q <= 1'b1; end end end /*********************************************************************************************************************************************/ /******************************************************* Track Bank Status and Issue Command *******************************************************/ //process request transaction always @(posedge i_controller_clk) begin if(sync_rst_controller) begin o_wb_stall <= 1'b1; o_wb_stall_q <= 1'b1; o_wb_stall_calib <= 1'b1; //set stage 1 to 0 stage1_pending <= 0; stage1_aux <= 0; stage1_we <= 0; stage1_dm <= 0; stage1_col <= 0; stage1_bank <= 0; stage1_row <= 0; stage1_next_bank <= 0; stage1_next_row <= 0; stage1_data <= 0; //set stage2 to 0 stage2_pending <= 0; stage2_aux <= 0; stage2_we <= 0; stage2_col <= 0; stage2_bank <= 0; stage2_row <= 0; cmd_odt_q <= 0; stage2_data_unaligned <= 0; stage2_data_unaligned_temp <= 0; stage2_dm_unaligned <= 0; stage2_dm_unaligned_temp <= 0; if(ECC_ENABLE == 3) begin ecc_col_addr_prev <= 0; ecc_bank_addr_prev <= 0; ecc_row_addr_prev <= 0; ecc_bank_addr <= 0; ecc_row_addr <= 0; ecc_col_addr <= 0; stage2_encoded_parity <= 0; end for(index=0; index shiftreg(CWL) -> OSERDES(DDR) -> ODELAY -> RAM end if(!ODELAY_SUPPORTED) begin stage2_data_unaligned <= stage2_data_unaligned_temp; //_temp is for added delay of 1 clock cycle (no ODELAY so no added delay) stage2_dm_unaligned <= stage2_dm_unaligned_temp; //_temp is for added delay of 1 clock cycle (no ODELAY so no added delay) end if(stage1_update) begin //stage1 will not do the request (pending low) when the //request is on the same bank as the current request. This //will ensure stage1 bank will be different from stage2 bank // if ECC_ENABLE != 3, then stage1 will always receive wishbone interface if(ECC_ENABLE != 3) begin stage1_pending <= i_wb_stb;//actual request flag stage1_aux <= i_aux; //aux ID for AXI compatibility stage1_we <= i_wb_we; //write-enable stage1_dm <= (ECC_ENABLE == 0)? i_wb_sel : {wb_sel_bits{1'b1}}; // no data masking when ECC is enabled end // ECC_ENABLE == 3 else begin // if ECC_ENABLE = 3 (inline ECC), then stage1 will either receive stage0 or wishbone stage1_pending <= wb_stb_mux;//actual request flag stage1_aux <= aux_mux; //aux ID for AXI compatibility stage1_we <= wb_we_mux; //write-enable stage1_dm <= {wb_sel_bits{1'b1}}; // no data masking when ECC is enabled end if(row_bank_col == 1) begin // memory address mapping: {row, bank, col} if(DUAL_RANK_DIMM[0]) begin stage1_bank[(DUAL_RANK_DIMM[0]? BA_BITS : 0)] <= i_wb_addr[DUAL_RANK_DIMM[0]? (ROW_BITS + BA_BITS + COL_BITS- $clog2(serdes_ratio*2)) : 0]; // msb determines rank stage1_next_bank[(DUAL_RANK_DIMM[0]? BA_BITS : 0)] <= wb_addr_plus_anticipate[DUAL_RANK_DIMM[0]? (ROW_BITS + BA_BITS + COL_BITS- $clog2(serdes_ratio*2)) : 0]; // msb determines rank end stage1_row <= i_wb_addr[ (ROW_BITS + BA_BITS + COL_BITS- $clog2(serdes_ratio*2) - 1) : (BA_BITS + COL_BITS - $clog2(serdes_ratio*2)) ]; //row_address stage1_bank[BA_BITS-1:0] <= i_wb_addr[ (BA_BITS + COL_BITS - $clog2(serdes_ratio*2) - 1) : (COL_BITS- $clog2(serdes_ratio*2)) ]; //bank_address stage1_col <= { i_wb_addr[ (COL_BITS- $clog2(serdes_ratio*2)-1) : 0 ], {{$clog2(serdes_ratio*2)}{1'b0}} }; //column address (n-burst word-aligned) //stage1_next_bank will not increment unless stage1_next_col //overwraps due to MARGIN_BEFORE_ANTICIPATE. Thus, anticipated //precharge and activate will happen only at the end of the //current column with a margin dictated by //MARGIN_BEFORE_ANTICIPATE /* verilator lint_off WIDTH */ {stage1_next_row , stage1_next_bank[BA_BITS-1:0]} <= wb_addr_plus_anticipate >> (COL_BITS- $clog2(serdes_ratio*2)); //anticipated next row and bank to be accessed /* verilator lint_on WIDTH */ stage1_data <= i_wb_data; end else if(row_bank_col == 0) begin // memory address mapping: {bank, row, col} stage1_bank[BA_BITS-1:0] <= i_wb_addr[ (BA_BITS + ROW_BITS + COL_BITS- $clog2(serdes_ratio*2) - 1) : (ROW_BITS + COL_BITS- $clog2(serdes_ratio*2))]; //bank_address stage1_row <= i_wb_addr[ (ROW_BITS + COL_BITS- $clog2(serdes_ratio*2) - 1) : (COL_BITS- $clog2(serdes_ratio*2)) ]; //row_address stage1_col <= { i_wb_addr[(COL_BITS- $clog2(serdes_ratio*2)-1) : 0] , {{$clog2(serdes_ratio*2)}{1'b0}} }; //column address (n-burst word-aligned) //stage1_next_row will not increment unless stage1_next_col //overwraps due to MARGIN_BEFORE_ANTICIPATE. Thus, anticipated //precharge and activate will happen only at the end of the //current column with a margin dictated by //MARGIN_BEFORE_ANTICIPATE /* verilator lint_off WIDTH */ {stage1_next_bank, stage1_next_row} <= wb_addr_plus_anticipate >> (COL_BITS- $clog2(serdes_ratio*2)); //anticipated next row and bank to be accessed /* verilator lint_on WIDTH */ stage1_data <= i_wb_data; end else if(row_bank_col == 2) begin // memory address mapping: {bank[2:1], row, bank[0], col} , used for ECC_ENABLE = 3 (Inline ECC) stage1_bank[2:1] <= wb_addr_mux[ (BA_BITS + ROW_BITS + COL_BITS- $clog2(serdes_ratio*2) - 1) : (ROW_BITS + COL_BITS - $clog2(serdes_ratio*2) + 1)]; //bank_address stage1_row <= wb_addr_mux[ (ROW_BITS + COL_BITS - $clog2(serdes_ratio*2)) : (COL_BITS - $clog2(serdes_ratio*2) + 1) ]; //row_address stage1_bank[0] <= wb_addr_mux[COL_BITS - $clog2(serdes_ratio*2)]; stage1_col <= { wb_addr_mux[(COL_BITS - $clog2(serdes_ratio*2)-1) : 0] , {{$clog2(serdes_ratio*2)}{1'b0}} }; //column address (n-burst word-aligned) //stage1_next_bank will not increment unless stage1_next_col //overwraps due to MARGIN_BEFORE_ANTICIPATE. This will overwrap every two banks //MARGIN_BEFORE_ANTICIPATE /* verilator lint_off WIDTH */ {stage1_next_bank[2:1], stage1_next_row, stage1_next_bank[0]} <= wb_addr_plus_anticipate >> (COL_BITS - $clog2(serdes_ratio*2)); //anticipated next row and bank to be accessed /* verilator lint_on WIDTH */ // ECC Mapping (Excel sheet design planning: https://docs.google.com/spreadsheets/d/1_8vrLmVSFpvRD13Mk8aNAMYlh62SfpPXOCYIQFEtcs4/edit?gid=0#gid=0) ecc_bank_addr <= {2'b11,!wb_addr_mux[COL_BITS - $clog2(serdes_ratio*2)]}; ecc_row_addr <= {1'b1, wb_addr_mux[ (ROW_BITS + COL_BITS - $clog2(serdes_ratio*2)) : (COL_BITS - $clog2(serdes_ratio*2) + 1 + 1) ]}; ecc_col_addr <= { wb_addr_mux[(COL_BITS - $clog2(serdes_ratio*2) + 1)] , wb_addr_mux[(BA_BITS + ROW_BITS + COL_BITS- $clog2(serdes_ratio*2) - 1) : (ROW_BITS + COL_BITS - $clog2(serdes_ratio*2) + 1)] , wb_addr_mux[(COL_BITS - $clog2(serdes_ratio*2) - 1) : 3], 3'b000 }; stage1_data <= wb_data_mux; end end // request from calibrate FSM will be accepted here else if(stage1_update_calib) begin // if ECC_ENABLE != 3, then stage1 will always receive wishbone interface if(ECC_ENABLE != 3) begin stage1_pending <= calib_stb;//actual request flag stage1_aux <= calib_aux; //aux ID for AXI compatibility stage1_we <= calib_we; //write-enable stage1_dm <= (ECC_ENABLE == 0)? calib_sel : {wb_sel_bits{1'b1}}; // no data masking when ECC is enabled end // ECC_ENABLE == 3 else begin // if ECC_ENABLE = 3 (inline ECC), then stage1 will either receive stage0 or wishbone stage1_pending <= calib_stb_mux;//actual request flag stage1_we <= calib_we_mux; //write-enable stage1_dm <= {wb_sel_bits{1'b1}}; // no data masking when ECC is enabled stage1_aux <= calib_aux_mux; //aux ID for AXI compatibility end if(row_bank_col == 1) begin // memory address mapping: {row, bank, col} if(DUAL_RANK_DIMM[0]) begin stage1_bank[(DUAL_RANK_DIMM[0]? BA_BITS : 0)] <= current_rank; // rank depends on current_rank stage1_next_bank[(DUAL_RANK_DIMM[0]? BA_BITS : 0)] <= current_rank; // rank depends on current_rank end stage1_row <= calib_addr[ (ROW_BITS + BA_BITS + COL_BITS- $clog2(serdes_ratio*2) - 1) : (BA_BITS + COL_BITS - $clog2(serdes_ratio*2)) ]; //row_address stage1_bank[BA_BITS-1:0] <= calib_addr[ (BA_BITS + COL_BITS - $clog2(serdes_ratio*2) - 1) : (COL_BITS- $clog2(serdes_ratio*2)) ]; //bank_address stage1_col <= { calib_addr[ (COL_BITS- $clog2(serdes_ratio*2)-1) : 0 ], {{$clog2(serdes_ratio*2)}{1'b0}} }; //column address (8-burst word-aligned) //stage1_next_bank will not increment unless stage1_next_col //overwraps due to MARGIN_BEFORE_ANTICIPATE. Thus, anticipated //precharge and activate will happen only at the end of the //current column with a margin dictated by //MARGIN_BEFORE_ANTICIPATE /* verilator lint_off WIDTH */ {stage1_next_row , stage1_next_bank[BA_BITS-1:0] } <= calib_addr_plus_anticipate >> (COL_BITS- $clog2(serdes_ratio*2)); //anticipated next row and bank to be accessed /* verilator lint_on WIDTH */ stage1_data <= calib_data; end else if(row_bank_col == 0) begin // memory address mapping: {bank, row, col} stage1_bank[BA_BITS-1:0] <= calib_addr[ (BA_BITS + ROW_BITS + COL_BITS- $clog2(serdes_ratio*2) - 1) : (ROW_BITS + COL_BITS- $clog2(serdes_ratio*2))]; //bank_address stage1_row <= calib_addr[ (ROW_BITS + COL_BITS- $clog2(serdes_ratio*2) - 1) : (COL_BITS- $clog2(serdes_ratio*2)) ]; //row_address stage1_col <= { calib_addr[(COL_BITS- $clog2(serdes_ratio*2)-1) : 0] , {{$clog2(serdes_ratio*2)}{1'b0}} }; //column address (8-burst word-aligned) //stage1_next_row will not increment unless stage1_next_col //overwraps due to MARGIN_BEFORE_ANTICIPATE. Thus, anticipated //precharge and activate will happen only at the end of the //current column with a margin dictated by //MARGIN_BEFORE_ANTICIPATE /* verilator lint_off WIDTH */ {stage1_next_bank, stage1_next_row} <= calib_addr_plus_anticipate >> (COL_BITS- $clog2(serdes_ratio*2)); //anticipated next row and bank to be accessed /* verilator lint_on WIDTH */ stage1_data <= calib_data; end else if(row_bank_col == 2) begin // memory address mapping: {bank[2:1], row, bank[0], col} stage1_bank[2:1] <= calib_addr_mux[ (BA_BITS + ROW_BITS + COL_BITS- $clog2(serdes_ratio*2) - 1) : (ROW_BITS + COL_BITS - $clog2(serdes_ratio*2) + 1)]; //bank_address stage1_row <= calib_addr_mux[ (ROW_BITS + COL_BITS - $clog2(serdes_ratio*2)) : (COL_BITS - $clog2(serdes_ratio*2) + 1) ]; //row_address stage1_bank[0] <= calib_addr_mux[COL_BITS - $clog2(serdes_ratio*2)]; stage1_col <= { calib_addr_mux[(COL_BITS- $clog2(serdes_ratio*2)-1) : 0] , {{$clog2(serdes_ratio*2)}{1'b0}} }; //column address (n-burst word-aligned) //stage1_next_row will not increment unless stage1_next_col //overwraps due to MARGIN_BEFORE_ANTICIPATE. This will overwrap every two banks //MARGIN_BEFORE_ANTICIPATE /* verilator lint_off WIDTH */ {stage1_next_bank[2:1], stage1_next_row, stage1_next_bank[0]} <= calib_addr_plus_anticipate >> (COL_BITS - $clog2(serdes_ratio*2)); //anticipated next row and bank to be accessed /* verilator lint_on WIDTH */ // ECC Mapping (Excel sheet design planning: https://docs.google.com/spreadsheets/d/1_8vrLmVSFpvRD13Mk8aNAMYlh62SfpPXOCYIQFEtcs4/edit?gid=0#gid=0) // ECC_BANK = {11,!bank[0]} // ECC_ROW = {1,row>>1} // ECC_COL = {row[0],bank[2:1],col>>3}" ecc_bank_addr <= {2'b11,!calib_addr_mux[COL_BITS - $clog2(serdes_ratio*2)]}; ecc_row_addr <= {1'b1, calib_addr_mux[ (ROW_BITS + COL_BITS - $clog2(serdes_ratio*2)) : (COL_BITS - $clog2(serdes_ratio*2) + 1 + 1) ]}; ecc_col_addr <= { calib_addr_mux[(COL_BITS - $clog2(serdes_ratio*2) + 1)] , calib_addr_mux[(BA_BITS + ROW_BITS + COL_BITS- $clog2(serdes_ratio*2) - 1) : (ROW_BITS + COL_BITS - $clog2(serdes_ratio*2) + 1)] , calib_addr_mux[(COL_BITS - $clog2(serdes_ratio*2) - 1) : 3], 3'b000 }; stage1_data <= calib_data_mux; end end // stage2 can have multiple pipelined stages inside it which acts as delay before issuing the write data (after issuing write command) for(index = 0; index < STAGE2_DATA_DEPTH-1; index = index+1) begin stage2_data[index+1] <= stage2_data[index]; // 0->1, 1->2 stage2_dm[index+1] <= stage2_dm[index]; end for(index = 0; index < LANES; index = index + 1) begin /* verilator lint_off WIDTH */ // if DQ is too late (298cd0ad51c1XXXX is written) then we want to DQ to be early // Thus, we will forward the stage2_data_unaligned directly to stage2_data[1] (instead of the usual stage2_data[0]) // checks if the DQ for this lane is late (index being zero while write_dq_late high means we will try 2nd assumption), if yes then we forward stage2_data_unaligned directly to stage2_data[1] if(lane_write_dq_late[index] && (data_start_index[index] != 0)) begin {unaligned_data[index], { stage2_data[1][((DQ_BITS*LANES)*7 + 8*index) +: 8], stage2_data[1][((DQ_BITS*LANES)*6 + 8*index) +: 8], stage2_data[1][((DQ_BITS*LANES)*5 + 8*index) +: 8], stage2_data[1][((DQ_BITS*LANES)*4 + 8*index) +: 8], stage2_data[1][((DQ_BITS*LANES)*3 + 8*index) +: 8], stage2_data[1][((DQ_BITS*LANES)*2 + 8*index) +: 8], stage2_data[1][((DQ_BITS*LANES)*1 + 8*index) +: 8], stage2_data[1][((DQ_BITS*LANES)*0 + 8*index) +: 8] }} <= ( { stage2_data_unaligned[((DQ_BITS*LANES)*7 + 8*index) +: 8], stage2_data_unaligned[((DQ_BITS*LANES)*6 + 8*index) +: 8], stage2_data_unaligned[((DQ_BITS*LANES)*5 + 8*index) +: 8], stage2_data_unaligned[((DQ_BITS*LANES)*4 + 8*index) +: 8], stage2_data_unaligned[((DQ_BITS*LANES)*3 + 8*index) +: 8], stage2_data_unaligned[((DQ_BITS*LANES)*2 + 8*index) +: 8], stage2_data_unaligned[((DQ_BITS*LANES)*1 + 8*index) +: 8], stage2_data_unaligned[((DQ_BITS*LANES)*0 + 8*index) +: 8] } << data_start_index[index]) | unaligned_data[index]; {unaligned_dm[index], { stage2_dm[1][LANES*7 + index], stage2_dm[1][LANES*6 + index], stage2_dm[1][LANES*5 + index], stage2_dm[1][LANES*4 + index], stage2_dm[1][LANES*3 + index], stage2_dm[1][LANES*2 + index], stage2_dm[1][LANES*1 + index], stage2_dm[1][LANES*0 + index] }} <= ( { stage2_dm_unaligned[LANES*7 + index], stage2_dm_unaligned[LANES*6 + index], stage2_dm_unaligned[LANES*5 + index], stage2_dm_unaligned[LANES*4 + index], stage2_dm_unaligned[LANES*3 + index], stage2_dm_unaligned[LANES*2 + index], stage2_dm_unaligned[LANES*1 + index], stage2_dm_unaligned[LANES*0 + index] } << (data_start_index[index]>>3)) | unaligned_dm[index]; /* verilator lint_on WIDTH */ end // end of if statement (dq for this lane is late) else begin // DQ is not late so we will forward stage2_data_unaligned to stage2_data[0] /* verilator lint_off WIDTH */ // stage2_data_unaligned is the DQ_BITS*LANES*8 raw data from stage 1 so not yet aligned // unaligned_data is 64 bits {unaligned_data[index], { stage2_data[0][((DQ_BITS*LANES)*7 + 8*index) +: 8], stage2_data[0][((DQ_BITS*LANES)*6 + 8*index) +: 8], stage2_data[0][((DQ_BITS*LANES)*5 + 8*index) +: 8], stage2_data[0][((DQ_BITS*LANES)*4 + 8*index) +: 8], stage2_data[0][((DQ_BITS*LANES)*3 + 8*index) +: 8], stage2_data[0][((DQ_BITS*LANES)*2 + 8*index) +: 8], stage2_data[0][((DQ_BITS*LANES)*1 + 8*index) +: 8], stage2_data[0][((DQ_BITS*LANES)*0 + 8*index) +: 8] }} <= ( { stage2_data_unaligned[((DQ_BITS*LANES)*7 + 8*index) +: 8], stage2_data_unaligned[((DQ_BITS*LANES)*6 + 8*index) +: 8], stage2_data_unaligned[((DQ_BITS*LANES)*5 + 8*index) +: 8], stage2_data_unaligned[((DQ_BITS*LANES)*4 + 8*index) +: 8], stage2_data_unaligned[((DQ_BITS*LANES)*3 + 8*index) +: 8], stage2_data_unaligned[((DQ_BITS*LANES)*2 + 8*index) +: 8], stage2_data_unaligned[((DQ_BITS*LANES)*1 + 8*index) +: 8], stage2_data_unaligned[((DQ_BITS*LANES)*0 + 8*index) +: 8] } << data_start_index[index]) | unaligned_data[index]; /* // Example with LANE 0: // Burst_0 to burst_7 of unaligned LANE 0 will be extracted which will be shifted by data_start_index. // Each 8 bits of shift means a burst will be moved to next ddr3_clk cycle, this is needed if for example // the DQ trace is longer than the command trace where the DQ bits must be delayed by 1 ddr3_clk cycle // to align the DQ data to the write command. // // Since 1 controller clk cycle will have 4 ddr3_clk cycle, and each ddr3_clk cycle is DDR: // CONTROLLER CLK CYCLE 0: [burst0,burst1] [burst2,burst3] [burst4,burst5] [burst6,burst7] // CONTROLLER CLK CYCLE 1: [burst0,burst1] [burst2,burst3] [burst4,burst5] [burst6,burst7] // CONTROLLER CLK CYCLE 2: [burst0,burst1] [burst2,burst3] [burst4,burst5] [burst6,burst7] // // shifting by 1 burst means burst 7 will be sent on next controller clk cycle and EVERY BURST WILL SHIFT: // CONTROLLER CLK CYCLE 0: [xxxxxx,xxxxxx] [burst0,burst1] [burst2,burst3] [burst4,burst5] // CONTROLLER CLK CYCLE 1: [burst6,burst7] [burst0,burst1] [burst2,burst3] [burst4,burst5] // CONTROLLER CLK CYCLE 2: [burst6,burst7] [burst0,burst1] [burst2,burst3] [burst4,burst5] // // the [burst6,burst7] which has to be stored and delayed until next clk cycle will be handled by unaligned_data {unaligned_data[0], { stage2_data[0][((64)*7 + 8*0) +: 8], stage2_data[0][((64)*6 + 8*0) +: 8], stage2_data[0][((64)*5 + 8*0) +: 8], stage2_data[0][((64)*4 + 8*0) +: 8], stage2_data[0][((64)*3 + 8*0) +: 8], stage2_data[0][((64)*2 + 8*0) +: 8], stage2_data[0][((64)*1 + 8*0) +: 8], stage2_data[0][((64)*0 + 8*0) +: 8] }} <= ( { stage2_data_unaligned[((64)*7 + 8*0) +: 8], stage2_data_unaligned[((64)*6 + 8*0) +: 8], stage2_data_unaligned[((64)*5 + 8*0) +: 8], stage2_data_unaligned[((64)*4 + 8*0) +: 8], stage2_data_unaligned[((64)*3 + 8*0) +: 8], stage2_data_unaligned[((64)*2 + 8*0) +: 8], stage2_data_unaligned[((64)*1 + 8*0) +: 8], stage2_data_unaligned[((64)*0 + 8*0) +: 8] } << data_start_index[0]) | unaligned_data[0]; */ // The same alignment logic is done with data mask {unaligned_dm[index], { stage2_dm[0][LANES*7 + index], stage2_dm[0][LANES*6 + index], stage2_dm[0][LANES*5 + index], stage2_dm[0][LANES*4 + index], stage2_dm[0][LANES*3 + index], stage2_dm[0][LANES*2 + index], stage2_dm[0][LANES*1 + index], stage2_dm[0][LANES*0 + index] }} <= ( { stage2_dm_unaligned[LANES*7 + index], stage2_dm_unaligned[LANES*6 + index], stage2_dm_unaligned[LANES*5 + index], stage2_dm_unaligned[LANES*4 + index], stage2_dm_unaligned[LANES*3 + index], stage2_dm_unaligned[LANES*2 + index], stage2_dm_unaligned[LANES*1 + index], stage2_dm_unaligned[LANES*0 + index] } << (data_start_index[index]>>3)) | unaligned_dm[index]; /* verilator lint_on WIDTH */ end // end for else statement (dq is not late for this lane) end // end of for loop to forward stage2_unaligned to stage2 by lane //abort any outgoing ack when cyc is low if(!i_wb_cyc && final_calibration_done) begin stage2_pending <= 0; stage1_pending <= 0; end end end // generate signals to be received by stage1 generate if(ECC_ENABLE == 3) begin : ecc_3_pipeline_control // logic when to update stage 1: // when not in refresh, transaction can only be processed when i_wb_cyc is high and not stall // OR stage0 is pending and stage2 is about to be empty // AND ecc_stage1_stall low (if high then stage2 will have ECC operation while stage1 remains) assign stage0_update = ((i_wb_cyc && !o_wb_stall) || (!final_calibration_done && !o_wb_stall_calib)) && ecc_stage1_stall; // stage0 is only used when ECC will be inserted next cycle (stage1 must remain) assign stage1_update = ( (i_wb_cyc && !o_wb_stall) || (stage0_pending && !ecc_stage2_stall) ) && !ecc_stage1_stall; assign stage1_update_calib = ( ((state_calibrate != DONE_CALIBRATE) && !o_wb_stall_calib) || (stage0_pending && !ecc_stage2_stall) ) && !ecc_stage1_stall; /* verilator lint_off WIDTH */ assign wb_addr_plus_anticipate = wb_addr_mux + MARGIN_BEFORE_ANTICIPATE; // wb_addr_plus_anticipate determines if it is near the end of column by checking if it jumps to next row assign calib_addr_plus_anticipate = calib_addr_mux + MARGIN_BEFORE_ANTICIPATE; // just same as wb_addr_plus_anticipate but while doing calibration /* verilator lint_on WIDTH */ assign ecc_stage1_stall = ( ({ecc_col_addr, ecc_bank_addr, ecc_row_addr} != {ecc_col_addr_prev, ecc_bank_addr_prev, ecc_row_addr_prev}) || (!stage1_we && stage2_we) ) && !ecc_stage2_stall && initial_calibration_done && !(stage1_we && !stage2_we) && stage1_pending; // write -> read with write ECC // read -> write will not do any ECC request /* verilator lint_off WIDTHTRUNC */ // retrieve parity bits for decoding, 3MSB of o_aux (after 2MSB) determines burst position of current request (which is also the position of ECC) assign decoded_parity = stage2_ecc_read_data_q[({32'd0, o_aux[AUX_WIDTH-3 : AUX_WIDTH-5]} << $clog2(wb_data_bits/8)) +: (wb_data_bits/8) ]; /* verilator lint_on WIDTHTRUNC */ // Muxing to choose whether stage1 will receive data from stage0 or wishbone interface always @* begin if(stage0_pending) begin wb_stb_mux = 1'b1; aux_mux = stage0_aux; wb_we_mux = stage0_we; wb_addr_mux = stage0_addr; wb_data_mux = stage0_data; calib_data_mux = stage0_data; calib_addr_mux = stage0_addr; calib_stb_mux = 1'b1; calib_we_mux = stage0_we; calib_aux_mux = stage0_aux; end else begin wb_stb_mux = i_wb_stb; aux_mux = i_aux; wb_we_mux = i_wb_we; wb_addr_mux = i_wb_addr; wb_data_mux = i_wb_data; calib_data_mux = calib_data; calib_addr_mux = calib_addr; calib_stb_mux = calib_stb; calib_we_mux = calib_we; calib_aux_mux = calib_aux; end end // always @(posedge i_controller_clk) begin if(sync_rst_controller) begin // reset ecc address stage0_pending <= 0; stage0_addr <= 0; stage0_aux <= 0; stage0_we <= 0; stage0_data <= 0; // ecc_col_addr_prev <= 0; // ecc_bank_addr_prev <= 0; // ecc_row_addr_prev <= 0; we_prev <= 0; stage2_ecc_write_data_q <= 0; write_ecc_stored_to_mem_q <= 0; ecc_req_stage2 <= 0; end else if(reset_done) begin if(stage0_update) begin // wishbone req wil only be stored to stage0 if there will be ecc write/read next clock cycle if(final_calibration_done) begin stage0_pending <= i_wb_stb && ecc_stage1_stall; end else begin stage0_pending <= calib_stb && ecc_stage1_stall; end stage0_addr <= final_calibration_done? i_wb_addr : calib_addr; //address stage0_aux <= final_calibration_done? i_aux : calib_aux; //aux ID for AXI compatibility stage0_we <= final_calibration_done? i_wb_we : calib_we; //write-enable stage0_data <= final_calibration_done? i_wb_data : calib_data; //data end // if there is already request on stage2 then only ecc_stage2_stall going low AND current ecc_stage1_stall is low can make this low else if(stage0_pending) begin stage0_pending <= (ecc_stage2_stall || ecc_stage1_stall) && (i_wb_cyc || !final_calibration_done); // stage0_pending will go low when cyc is low end // if stage1 will be updated, then stage0 will be empty else if(stage1_update || stage1_update_calib) begin stage0_pending <= 1'b0; end // if(!i_wb_cyc && final_calibration_done) begin // stage0_pending <= 1'b0; // end // ecc_stage1_stall high means stage2 will start ECC write/read operation next clock cycle thus update prev ecc address to current // if(ecc_stage1_stall) begin // ecc_col_addr_prev <= ecc_col_addr; // ecc_bank_addr_prev <= ecc_bank_addr; // ecc_row_addr_prev <= ecc_row_addr; // end // stage2_ecc_write_data_d will get updated when current request is non-ECC write (new ECC bits to be stored) stage2_ecc_write_data_q <= stage2_ecc_write_data_d; // notify if ECC bits are already written to memory write_ecc_stored_to_mem_q <= write_ecc_stored_to_mem_d; // all bytes will be masked by default (unwritable) stage2_ecc_write_data_mask_q <= stage2_ecc_write_data_mask_d; // if data received from wishbone is for ECC read, update stage2_ecc_read_data_q stage2_ecc_read_data_q <= (o_aux[AUX_WIDTH-1 : AUX_WIDTH-2] == 2'b11)? o_wb_data_q_current : stage2_ecc_read_data_q; // abort any ECC request when cyc is low if(!i_wb_cyc && final_calibration_done) begin ecc_req_stage2 <= 0; end // ecc_req_stage2 will only be high when stage2 will have ECC read/write operation else if(ecc_stage1_stall) ecc_req_stage2 <= 1'b1; // ECC is done this cycle if ecc_stage2_stall is now low else if(!ecc_stage2_stall) ecc_req_stage2 <= 1'b0; end end end else begin : ecc_not_3_pipeline_control // logic when to update stage 1: // when not in refresh, transaction can only be processed when i_wb_cyc is high and not stall assign stage1_update = i_wb_cyc && !o_wb_stall; assign stage1_update_calib = !final_calibration_done && !o_wb_stall_calib; /* verilator lint_off WIDTH */ assign wb_addr_plus_anticipate = i_wb_addr + MARGIN_BEFORE_ANTICIPATE; // wb_addr_plus_anticipate determines if it is near the end of column by checking if it jumps to next row assign calib_addr_plus_anticipate = calib_addr + MARGIN_BEFORE_ANTICIPATE; // just same as wb_addr_plus_anticipate but while doing calibration /* verilator lint_on WIDTH */ // default 0 assign ecc_stage1_stall = 0; assign decoded_parity = 0; always @* begin calib_addr_mux = 0; calib_data_mux = 0; calib_stb_mux = 0; calib_we_mux = 0; calib_aux_mux = 0; write_ecc_stored_to_mem_q = 0; end end endgenerate assign o_phy_data = stage2_data[STAGE2_DATA_DEPTH-1]; // the data sent to PHY is the last stage of of stage 2 (since stage 2 can have multiple pipelined stages inside it_ //assign o_phy_data = initial_calibration_done? {stage2_data[STAGE2_DATA_DEPTH-1][wb_data_bits - 1:1], 1'b0} : stage2_data[STAGE2_DATA_DEPTH-1]; // ECC test assign o_phy_dm = stage2_dm[STAGE2_DATA_DEPTH-1]; // DIAGRAM FOR ALL RELEVANT TIMING PARAMETERS: // // tRTP // ------------------------------------------------------------- // | tCCD | // | -----> Read ---------> Read // v | ^ | // Precharge ------> Activate -------->| | tWTR | tRTW // ^ tRP tRCD | | v // | ------> Write -------> Write // | tCCD | // ------------------------------------------------------------- // tWR (after data burst) //note: all delays after write counts only after the data burst (except for write-to-write tCCD) // //Pipeline Stages: // wishbone inputs --> stage1 --> stage2 --> cmd always @* begin stage2_ecc_write_data_d = stage2_ecc_write_data_q; stage2_ecc_write_data_mask_d = stage2_ecc_write_data_mask_q; write_ecc_stored_to_mem_d = write_ecc_stored_to_mem_q; cmd_odt = cmd_odt_q || write_calib_odt; // logic for clock enable if(DUAL_RANK_DIMM[0]) begin if(current_rank) begin // if already on rank 1 cmd_ck_en[0] = final_calibration_done? instruction[CLOCK_EN] : 1'b0; // rank 0 is on self-refresh (clock en disabled) if calibration is not yet done for rank 1 cmd_ck_en[DUAL_RANK_DIMM] = instruction[CLOCK_EN]; // rank 1 follows current instruction end else begin // if on rank 0 cmd_ck_en[0] = instruction[CLOCK_EN]; // rank 0 follows current instruction cmd_ck_en[DUAL_RANK_DIMM] = 1'b0; // rank 1 is idle end end else begin cmd_ck_en[0] = instruction[CLOCK_EN]; end cmd_reset_n = instruction[RESET_N] || (DUAL_RANK_DIMM[0] && current_rank); // if dual rank enabled and current rank is 1 then reset_n does not need to assert again (already asserted on rank 0) stage1_stall = 1'b0; stage2_stall = 1'b0; ecc_stage2_stall = 1'b0; stage2_update = 1'b1; //always update stage 2 UNLESS it has a pending request (stage2_pending high) // o_wb_stall_d = 1'b0; //wb_stall going high is determined on stage 1 (higher priority), wb_stall going low is determined at stage2 (lower priority) precharge_slot_busy = 0; //flag that determines if stage 2 is issuing precharge (thus stage 1 cannot issue precharge) activate_slot_busy = 0; //flag that determines if stage 2 is issuing activate (thus stage 1 cannot issue activate) write_dqs_d = write_calib_dqs; write_dq_d = write_calib_dq; for(index=0; index < (1<<(BA_BITS+DUAL_RANK_DIMM)); index=index+1) begin bank_status_d[index] = bank_status_q[index]; bank_active_row_d[index] = bank_active_row_q[index]; end //set PRECHARGE_SLOT as reset instruction, the remainings are NOP (MSB is high) //delay_counter_is_zero high signifies start of new reset instruction (the time when the command must be issued) cmd_d[PRECHARGE_SLOT][cmd_len-1-DUAL_RANK_DIMM:0] = {(!delay_counter_is_zero), instruction[DDR3_CMD_START-1:DDR3_CMD_END] | {3{(!delay_counter_is_zero)}} , cmd_odt, cmd_ck_en, cmd_reset_n, instruction[MRS_BANK_START:(MRS_BANK_START-BA_BITS+1)], instruction[ROW_BITS-1:0]}; cmd_d[PRECHARGE_SLOT][10] = instruction[A10_CONTROL]; cmd_d[READ_SLOT][cmd_len-1-DUAL_RANK_DIMM:0] = {(!issue_read_command), CMD_RD[2:0] | {3{(!issue_read_command)}}, cmd_odt, cmd_ck_en, cmd_reset_n, {(ROW_BITS+BA_BITS){1'b0}}}; // issued during MPR reads (address does not matter) cmd_d[ACTIVATE_SLOT][cmd_len-1-DUAL_RANK_DIMM:0] = {1'b0, 3'b111 , cmd_odt, cmd_ck_en, cmd_reset_n, {(ROW_BITS+BA_BITS){1'b0}}}; // always NOP by default // extra slot is created when READ and WRITE slots are the same // this remaining slot should be NOP by default if(WRITE_SLOT == READ_SLOT) begin cmd_d[REMAINING_SLOT][cmd_len-1-DUAL_RANK_DIMM:0] = {1'b0, 3'b111 , cmd_odt, cmd_ck_en, cmd_reset_n, {(ROW_BITS+BA_BITS){1'b0}}}; // always NOP by default end // if read and write slot is not shared, the write slot should be NOP by default else begin cmd_d[WRITE_SLOT][cmd_len-1-DUAL_RANK_DIMM:0] = {1'b0, 3'b111, cmd_odt, cmd_ck_en, cmd_reset_n, {(ROW_BITS+BA_BITS){1'b0}}}; // always NOP by default end // if precharge slot is not the 0th slot, then all slots before precharge will have the previous value of cmd_ck_en if(PRECHARGE_SLOT != 0) begin for(index = 0; index < PRECHARGE_SLOT; index=index+1) begin // slots before if(DUAL_RANK_DIMM[0]) begin cmd_d[index][CMD_CKE_2] = prev_cmd_ck_en[DUAL_RANK_DIMM]; end cmd_d[index][CMD_CKE] = prev_cmd_ck_en[0]; end end ///////////////////////////////////////////////////////////////////////////////////////// // if dual rank is enabled, last 2 bits are {cs_2, cs_1} if(DUAL_RANK_DIMM[0]) begin cmd_d[PRECHARGE_SLOT][cmd_len-1:cmd_len-2]= {!current_rank || !delay_counter_is_zero , (current_rank && !final_calibration_done) || !delay_counter_is_zero}; // reset sequence is done per rank cmd_d[READ_SLOT][cmd_len-1:cmd_len-2] = {!current_rank || !issue_read_command , current_rank || !issue_read_command}; // MPR is done per rank cmd_d[ACTIVATE_SLOT][cmd_len-1:cmd_len-2] = 2'b11; // NOP by default if(WRITE_SLOT == READ_SLOT) begin cmd_d[REMAINING_SLOT][cmd_len-1:cmd_len-2] = 2'b11; // always NOP by default end // if read and write slot is not shared, the write slot should be NOP by default else begin cmd_d[WRITE_SLOT][cmd_len-1:cmd_len-2] = 2'b11; // always NOP by default end end ///////////////////////////////////////////////////////////////////////////////////////// // decrement delay counters for every bank , stay to 0 once 0 is reached // every bank will have its own delay counters for precharge, activate, write, and read for(index=0; index< (1<<(BA_BITS+DUAL_RANK_DIMM)); index=index+1) begin delay_before_precharge_counter_d[index] = (delay_before_precharge_counter_q[index] == 0)? 0: delay_before_precharge_counter_q[index] - 1; delay_before_activate_counter_d[index] = (delay_before_activate_counter_q[index] == 0)? 0: delay_before_activate_counter_q[index] - 1; delay_before_write_counter_d[index] = (delay_before_write_counter_q[index] == 0)? 0:delay_before_write_counter_q[index] - 1; delay_before_read_counter_d[index] = (delay_before_read_counter_q[index] == 0)? 0:delay_before_read_counter_q[index] - 1; end for(index = 1; index < READ_ACK_PIPE_WIDTH; index = index + 1) begin // shift is rightward where LSB gets MSB ([MSB] -> [] -> [] -> .... -> [] -[LSB]) shift_reg_read_pipe_d[index-1] = shift_reg_read_pipe_q[index]; end write_ack_index_d = (write_ack_index_q != 1)? write_ack_index_q - 1 : 1; // decrease write index as shift_reg_read_pipe_d is shifted // earliest write ack is on index 1 shift_reg_read_pipe_q[1] since [0] will fail the alternating index_wb_data shift_reg_read_pipe_d[READ_ACK_PIPE_WIDTH-1] = 0; //MSB just receives zero when shifted rightward //USE _d in ALL //if there is a pending request, issue the appropriate commands if(stage2_pending) begin stage2_stall = 1; //initially high when stage 2 is pending ecc_stage2_stall = 1; stage2_update = 0; //right row is already active so go straight to read/write if(bank_status_q[stage2_bank] && bank_active_row_q[stage2_bank] == stage2_row) begin //read/write operation //write request if(stage2_we && delay_before_write_counter_q[stage2_bank] == 0) begin stage2_stall = 0; ecc_stage2_stall = 0; stage2_update = 1; cmd_odt = 1'b1; // don't acknowledge if ECC request /* verilator lint_off WIDTHTRUNC */ shift_reg_read_pipe_d[write_ack_index_q] = {stage2_aux, !ecc_req_stage2}; // ack is sent to shift_reg which will be shifted until the wb ack output /* verilator lint_on WIDTHTRUNC */ write_ack_index_d = write_ack_index_q; // write index stay when write //write acknowledge will use the same logic pipeline as the read acknowledge. //This would mean write ack latency will be the same for //read ack latency. If it takes 8 clocks for read ack, write //ack latency will be the same. This simplifies the logic //for write ack as there will be no need to analyze the //contents of the shift_reg_read_pipe just to determine //where best to place the write ack on the pipeline (since //the order of ack must be maintained). But this would mean //the latency for write is fixed regardless if there is an //outstanding read ack or none on the pipeline. But this is // acceptable in my opinion since this is a pipelined wishbone // where the transaction can continue regardless when ack returns //set-up delay before precharge, read, and write if(delay_before_precharge_counter_q[stage2_bank] <= WRITE_TO_PRECHARGE_DELAY) begin //it is possible that the delay_before_precharge is //set to tRAS (activate to precharge delay). And if we //overwrite delay_before_precharge, we might overwrite //the delay to a lower value which will violate the //tRAS requirement. Thus, we must first check if the //delay_before_precharge is set to a value not more //than the WRITE_TO_PRECHARGE_DELAY delay_before_precharge_counter_d[stage2_bank] = WRITE_TO_PRECHARGE_DELAY; end for(index=0; index < (1<<(BA_BITS+DUAL_RANK_DIMM)); index=index+1) begin //the write to read delay applies to all banks (odt must be turned off properly before reading) delay_before_read_counter_d[index] = WRITE_TO_READ_DELAY + 1; //NOTE TO SELF: why plus 1? end delay_before_write_counter_d[stage2_bank] = WRITE_TO_WRITE_DELAY; //issue read command if(DUAL_RANK_DIMM[0]) begin if(COL_BITS <= 10) begin // if stage2_bank[BA_BITS] high then request is for 2nd rank, if low then for 1st rank cmd_d[WRITE_SLOT] = {!stage2_bank[(DUAL_RANK_DIMM[0]? BA_BITS : 0)], stage2_bank[(DUAL_RANK_DIMM[0]? BA_BITS : 0)], CMD_WR[2:0], cmd_odt, cmd_ck_en, cmd_reset_n, stage2_bank[BA_BITS-1:0],{{ROW_BITS-32'd11}{1'b0}} , 1'b0 , stage2_col[(DUAL_RANK_DIMM[0]? 9 : 8):0]}; end else begin // COL_BITS > 10 has different format from <= 10 cmd_d[WRITE_SLOT] = {!stage2_bank[(DUAL_RANK_DIMM[0]? BA_BITS : 0)], stage2_bank[(DUAL_RANK_DIMM[0]? BA_BITS : 0)], CMD_WR[2:0], cmd_odt, cmd_ck_en, cmd_reset_n, stage2_bank[BA_BITS-1:0],{{ROW_BITS-32'd12}{1'b0}} , stage2_col[(COL_BITS <= 10) ? 0 : 10] , 1'b0 , stage2_col[(DUAL_RANK_DIMM[0]? 9 : 8):0]}; end end else begin if(COL_BITS <= 10) begin cmd_d[WRITE_SLOT] = {1'b0, CMD_WR[2:0], cmd_odt, cmd_ck_en, cmd_reset_n, stage2_bank,{{ROW_BITS-32'd11}{1'b0}} , 1'b0 , stage2_col[9:0]}; end else begin // COL_BITS > 10 has different format from <= 10 cmd_d[WRITE_SLOT] = {1'b0, CMD_WR[2:0], cmd_odt, cmd_ck_en, cmd_reset_n, stage2_bank,{{ROW_BITS-32'd12}{1'b0}} , stage2_col[(COL_BITS <= 10) ? 0 : 10] , 1'b0 , stage2_col[9:0]}; end end //turn on odt at same time as write cmd cmd_d[0][CMD_ODT] = cmd_odt; cmd_d[1][CMD_ODT] = cmd_odt; cmd_d[2][CMD_ODT] = cmd_odt; cmd_d[3][CMD_ODT] = cmd_odt; write_dqs_d=1; write_dq_d=1; if(ECC_ENABLE == 3) begin if(!ecc_req_stage2) begin // Store ECC parity bits // For example, in x16 DDR3, total data width is 128. Each 64 bits is encoded, thus 2 sets of parity bits // of 8 bits long (encoding 64 bits require 8 bits of parity). Thus 16 total bits is stored to stage2_ecc_write_data_d // 8 words will require eight 16-bits parity for total of 128 bits. This 128 bits will be stored to a mapped ECC address // where positioning is dependent on stage2_col // stage2_ecc_write_data_d = { {word7_parity} , {word6_parity} , {word5_parity} , {word4_parity} , {word3_parity} , {word2_parity} , {word1_parity} , {word0_parity}} /* verilator lint_off WIDTHTRUNC */ stage2_ecc_write_data_d[({32'd0, stage2_col[5:3]} << $clog2(wb_data_bits/8)) +: (wb_data_bits/8) ] = stage2_encoded_parity; // enable data mask for the position of ECC bit stage2_ecc_write_data_mask_d[({32'd0, stage2_col[5:3]} << $clog2(wb_data_bits/64)) +: (wb_data_bits/64)] = {(wb_data_bits/64){1'b1}}; /* verilator lint_on WIDTHTRUNC */ // notify that there are ECC bits which is not yet written to memory write_ecc_stored_to_mem_d = 1'b0; end else begin // reset data mask if ECC write will be done stage2_ecc_write_data_mask_d = 0; // notify that are ECC bits are now written to memory write_ecc_stored_to_mem_d = 1'b1; end end end //read request else if(!stage2_we && delay_before_read_counter_q[stage2_bank]==0) begin stage2_stall = 0; ecc_stage2_stall = 0; stage2_update = 1; cmd_odt = 1'b0; //set-up delay before precharge, read, and write if(delay_before_precharge_counter_q[stage2_bank] <= READ_TO_PRECHARGE_DELAY) begin delay_before_precharge_counter_d[stage2_bank] = READ_TO_PRECHARGE_DELAY; end delay_before_read_counter_d[stage2_bank] = READ_TO_READ_DELAY; delay_before_write_counter_d[stage2_bank] = READ_TO_WRITE_DELAY + 1; //temporary solution since its possible odt to go high already while reading previously for(index=0; index < (1<<(BA_BITS+DUAL_RANK_DIMM)); index=index+1) begin //the read to write delay applies to all banks (odt must be turned on properly before writing and this delay is for ODT to settle) delay_before_write_counter_d[index] = READ_TO_WRITE_DELAY + 1; // NOTE TO SELF: why plus 1? end // don't acknowledge if ECC request shift_reg_read_pipe_d[READ_ACK_PIPE_WIDTH-1] = {stage2_aux, !ecc_req_stage2}; // ack is sent to shift_reg which will be shifted until the wb ack output write_ack_index_d = READ_ACK_PIPE_WIDTH[$clog2(READ_ACK_PIPE_WIDTH)-1:0]-1'b1; // next index for write is the last index of shift_reg_read_pipe_d //issue read command if(DUAL_RANK_DIMM[0]) begin if(COL_BITS <= 10) begin cmd_d[READ_SLOT] = {!stage2_bank[(DUAL_RANK_DIMM[0]? BA_BITS : 0)], stage2_bank[(DUAL_RANK_DIMM[0]? BA_BITS : 0)], CMD_RD[2:0], cmd_odt, cmd_ck_en, cmd_reset_n, stage2_bank[BA_BITS-1:0], {{ROW_BITS-32'd11}{1'b0}} , 1'b0 , stage2_col[(DUAL_RANK_DIMM[0]? 9 : 8):0]}; end else begin // COL_BITS > 10 has different format from <= 10 cmd_d[READ_SLOT] = {!stage2_bank[(DUAL_RANK_DIMM[0]? BA_BITS : 0)], stage2_bank[(DUAL_RANK_DIMM[0]? BA_BITS : 0)], CMD_RD[2:0], cmd_odt, cmd_ck_en, cmd_reset_n, stage2_bank[BA_BITS-1:0], {{ROW_BITS-32'd12}{1'b0}} , stage2_col[(COL_BITS <= 10) ? 0 : 10] , 1'b0 , stage2_col[(DUAL_RANK_DIMM[0]? 9 : 8):0]}; end end else begin if(COL_BITS <= 10) begin cmd_d[READ_SLOT] = {1'b0, CMD_RD[2:0], cmd_odt, cmd_ck_en, cmd_reset_n, stage2_bank, {{ROW_BITS-32'd11}{1'b0}} , 1'b0 , stage2_col[9:0]}; end else begin // COL_BITS > 10 has different format from <= 10 cmd_d[READ_SLOT] = {1'b0, CMD_RD[2:0], cmd_odt, cmd_ck_en, cmd_reset_n, stage2_bank, {{ROW_BITS-32'd12}{1'b0}} , stage2_col[(COL_BITS <= 10) ? 0 : 10] , 1'b0 , stage2_col[9:0]}; end end //turn off odt at same time as read cmd cmd_d[0][CMD_ODT] = cmd_odt; cmd_d[1][CMD_ODT] = cmd_odt; cmd_d[2][CMD_ODT] = cmd_odt; cmd_d[3][CMD_ODT] = cmd_odt; end end //bank is idle so activate it else if(!bank_status_q[stage2_bank] && delay_before_activate_counter_q[stage2_bank] == 0) begin activate_slot_busy = 1'b1; // must meet TRRD (activate to activate delay) for(index=0; index < (1<<(BA_BITS+DUAL_RANK_DIMM)); index=index+1) begin //the activate to activate delay applies to all banks if(delay_before_activate_counter_q[index] <= ACTIVATE_TO_ACTIVATE_DELAY) begin // if delay is > ACTIVATE_TO_ACTIVATE_DELAY, then updating it to the lower delay will cause the previous delay to be violated delay_before_activate_counter_d[index] = ACTIVATE_TO_ACTIVATE_DELAY; end end delay_before_precharge_counter_d[stage2_bank] = ACTIVATE_TO_PRECHARGE_DELAY; //set-up delay before read and write if(delay_before_read_counter_q[stage2_bank] <= ACTIVATE_TO_READ_DELAY) begin // if current delay is > ACTIVATE_TO_READ_DELAY, then updating it to the lower delay will cause the previous delay to be violated delay_before_read_counter_d[stage2_bank] = ACTIVATE_TO_READ_DELAY; end if(delay_before_write_counter_q[stage2_bank] <= ACTIVATE_TO_WRITE_DELAY) begin // if current delay is > ACTIVATE_TO_WRITE_DELAY, then updating it to the lower delay will cause the previous delay to be violated delay_before_write_counter_d[stage2_bank] = ACTIVATE_TO_WRITE_DELAY; end //issue activate command if(DUAL_RANK_DIMM[0]) begin cmd_d[ACTIVATE_SLOT] = {!stage2_bank[(DUAL_RANK_DIMM[0]? BA_BITS : 0)], stage2_bank[(DUAL_RANK_DIMM[0]? BA_BITS : 0)], CMD_ACT[2:0], cmd_odt, cmd_ck_en, cmd_reset_n, stage2_bank[BA_BITS-1:0], stage2_row[(DUAL_RANK_DIMM[0]? ROW_BITS-1 : ROW_BITS-2):0]}; end else begin cmd_d[ACTIVATE_SLOT] = {1'b0, CMD_ACT[2:0], cmd_odt, cmd_ck_en, cmd_reset_n, stage2_bank , stage2_row}; end //update bank status and active row bank_status_d[stage2_bank] = 1'b1; bank_active_row_d[stage2_bank] = stage2_row; end //bank is not idle but wrong row is activated so do precharge else if(bank_status_q[stage2_bank] && bank_active_row_q[stage2_bank] != stage2_row && delay_before_precharge_counter_q[stage2_bank] ==0) begin precharge_slot_busy = 1'b1; //set-up delay before activate delay_before_activate_counter_d[stage2_bank] = PRECHARGE_TO_ACTIVATE_DELAY; //issue precharge command if(DUAL_RANK_DIMM[0]) begin cmd_d[PRECHARGE_SLOT] = {!stage2_bank[(DUAL_RANK_DIMM[0]? BA_BITS : 0)], stage2_bank[(DUAL_RANK_DIMM[0]? BA_BITS : 0)], CMD_PRE[2:0], cmd_odt, cmd_ck_en, cmd_reset_n, stage2_bank[BA_BITS-1:0], { {{ROW_BITS-32'd11}{1'b0}} , 1'b0 , stage2_row[DUAL_RANK_DIMM[0]? 9 : 8:0] } }; end else begin cmd_d[PRECHARGE_SLOT] = {1'b0, CMD_PRE[2:0], cmd_odt, cmd_ck_en, cmd_reset_n, stage2_bank, { {{ROW_BITS-32'd11}{1'b0}} , 1'b0 , stage2_row[9:0] } }; end //update bank status and active row bank_status_d[stage2_bank] = 1'b0; end end //end of stage 2 pending // pending request on stage 1 // if DDR3_CLK_PERIOD == 1250, then remove this anticipate stage 1 to pass timing if(DDR3_CLK_PERIOD != 1_250) begin if(stage1_pending && !((stage1_next_bank == stage2_bank) && stage2_pending)) begin //stage 1 will mainly be for anticipation (if next requests need to jump to new bank then //anticipate the precharging and activate of that next bank, BUT it can also handle //precharge and activate of CURRENT wishbone request. //Anticipate will depend if the request is on the end of the row // and must start the anticipation. For example if we have 10 rows in a bank: //[R][R][R][R][R][R][R][A][A][A] -> [next bank] // //R = Request, A = Anticipate //Unless we are near the third to the last column, stage 1 will //issue Activate and Precharge on the CURRENT bank. Else, stage //1 will issue Activate and Precharge for the NEXT bank // Thus stage 1 anticipate makes sure smooth burst operation that jumps banks if(bank_status_q[stage1_next_bank] && bank_active_row_q[stage1_next_bank] != stage1_next_row && delay_before_precharge_counter_q[stage1_next_bank] ==0 && !precharge_slot_busy) begin //set-up delay before read and write delay_before_activate_counter_d[stage1_next_bank] = PRECHARGE_TO_ACTIVATE_DELAY; if(DUAL_RANK_DIMM[0]) begin cmd_d[PRECHARGE_SLOT] = {!stage1_next_bank[(DUAL_RANK_DIMM[0]? BA_BITS : 0)], stage1_next_bank[(DUAL_RANK_DIMM[0]? BA_BITS : 0)], CMD_PRE[2:0], cmd_odt, cmd_ck_en, cmd_reset_n, stage1_next_bank[BA_BITS-1:0], { {{ROW_BITS-32'd11}{1'b0}} , 1'b0 , stage1_next_row[(DUAL_RANK_DIMM[0]? 9 : 8):0] } }; end else begin cmd_d[PRECHARGE_SLOT] = {1'b0, CMD_PRE[2:0], cmd_odt, cmd_ck_en, cmd_reset_n, stage1_next_bank, { {{ROW_BITS-32'd11}{1'b0}} , 1'b0 , stage1_next_row[9:0] } }; end bank_status_d[stage1_next_bank] = 1'b0; end //end of anticipate precharge //anticipated bank is idle so do activate else if(!bank_status_q[stage1_next_bank] && delay_before_activate_counter_q[stage1_next_bank] == 0 && !activate_slot_busy) begin // must meet TRRD (activate to activate delay) for(index=0; index < (1<<(BA_BITS+DUAL_RANK_DIMM)); index=index+1) begin //the activate to activate delay applies to all banks if(delay_before_activate_counter_d[index] <= ACTIVATE_TO_ACTIVATE_DELAY) begin // if delay is > ACTIVATE_TO_ACTIVATE_DELAY, then updating it to the lower delay will cause the previous delay to be violated delay_before_activate_counter_d[index] = ACTIVATE_TO_ACTIVATE_DELAY; end end delay_before_precharge_counter_d[stage1_next_bank] = ACTIVATE_TO_PRECHARGE_DELAY; //set-up delay before read and write if(delay_before_read_counter_d[stage1_next_bank] <= ACTIVATE_TO_READ_DELAY) begin // if current delay is > ACTIVATE_TO_READ_DELAY, then updating it to the lower delay will cause the previous delay to be violated delay_before_read_counter_d[stage1_next_bank] = ACTIVATE_TO_READ_DELAY; end if(delay_before_write_counter_d[stage1_next_bank] <= ACTIVATE_TO_WRITE_DELAY) begin // if current delay is > ACTIVATE_TO_WRITE_DELAY, then updating it to the lower delay will cause the previous delay to be violated delay_before_write_counter_d[stage1_next_bank] = ACTIVATE_TO_WRITE_DELAY; end if(DUAL_RANK_DIMM[0]) begin cmd_d[ACTIVATE_SLOT] = {!stage1_next_bank[(DUAL_RANK_DIMM[0]? BA_BITS : 0)], stage1_next_bank[(DUAL_RANK_DIMM[0]? BA_BITS : 0)], CMD_ACT[2:0] , cmd_odt, cmd_ck_en, cmd_reset_n, stage1_next_bank[BA_BITS-1:0] , stage1_next_row[(DUAL_RANK_DIMM[0]? ROW_BITS-1 : ROW_BITS-2):0]}; end else begin cmd_d[ACTIVATE_SLOT] = {1'b0, CMD_ACT[2:0] , cmd_odt, cmd_ck_en, cmd_reset_n, stage1_next_bank , stage1_next_row}; end bank_status_d[stage1_next_bank] = 1'b1; bank_active_row_d[stage1_next_bank] = stage1_next_row; end //end of anticipate activate end //end of stage1 anticipate end // control stage 1 stall if(stage1_pending) begin //raise stall only if stage2 will still be busy next clock // Stage1 bank and row will determine if transaction will be // stalled (bank is idle OR wrong row is active). if(!bank_status_d[stage1_bank] || (bank_status_d[stage1_bank] && bank_active_row_d[stage1_bank] != stage1_row)) begin stage1_stall = 1; end else if(!stage1_we && delay_before_read_counter_d[stage1_bank] != 0) begin // if read request but delay before read is not yet met then stall stage1_stall = 1; end else if(stage1_we && delay_before_write_counter_d[stage1_bank] != 0) begin // if write request but delay before write is not yet met then stall stage1_stall = 1; end //different request type will need a delay of more than 1 clk cycle so stall the pipeline //if(stage1_we != stage2_we) begin // stage1_stall = 1; //end end //control stage 2 stall if(stage2_pending) begin //control stage2 stall in advance if(bank_status_d[stage2_bank] && bank_active_row_d[stage2_bank] == stage2_row) begin //read/write operation //write request if(stage2_we && delay_before_write_counter_d[stage2_bank] == 0) begin // if write request and delay before write is already met then deassert stall stage2_stall = 0; //to low stall next stage, but not yet at this stage end //read request else if(!stage2_we && delay_before_read_counter_d[stage2_bank]==0) begin // if read request and delay before read is already met then deassert stall stage2_stall = 0; end end end // control logic for stall // this small logic is already optimized via listing all possible combinations on excel sheet, investigating the patterns // and passing the formal verification. I recommend to not touch this and just left this as is. // This logic makes sure stall will never go high unless the pipeline is full // What made this complicated is that fact you have to predict the stall for next clock cycle in such // a way that it will only stall next clock cycle if the pipeline will be full on the next clock cycle. // Excel sheet design planning: https://docs.google.com/spreadsheets/d/1_8vrLmVSFpvRD13Mk8aNAMYlh62SfpPXOCYIQFEtcs4/edit?gid=668378527#gid=668378527 // Old: https://1drv.ms/x/s!AhWdq9CipeVagSqQXPwRmXhDgttL?e=vVYIxE&nav=MTVfezAwMDAwMDAwLTAwMDEtMDAwMC0wMDAwLTAwMDAwMDAwMDAwMH0 // if(o_wb_stall_q) o_wb_stall_d = stage2_stall; // else if( (!i_wb_stb && final_calibration_done) || (!calib_stb && state_calibrate != DONE_CALIBRATE) ) o_wb_stall_d = 0; // else if(!stage1_pending) o_wb_stall_d = stage2_stall; // else o_wb_stall_d = stage1_stall; // if( !o_wb_stall_q && !i_wb_stb ) o_wb_stall_d = 1'b0; // else if(ecc_stage1_stall) o_wb_stall_d = 1'b1; // else if(stage0_pending) o_wb_stall_d = ecc_stage2_stall || stage1_stall; // else begin // if(o_wb_stall_q) o_wb_stall_d = stage2_stall; // else o_wb_stall_d = stage1_stall; // end // pipeline control for ECC_ENABLE != 3 if(ECC_ENABLE != 3) begin if(!i_wb_cyc && final_calibration_done) begin o_wb_stall_d = 0; end else if(!o_wb_stall_q && ( (!i_wb_stb && final_calibration_done) || (!calib_stb && !final_calibration_done) )) begin o_wb_stall_d = 0; end else if(o_wb_stall_q || !stage1_pending) begin o_wb_stall_d = stage2_stall; end else begin o_wb_stall_d = stage1_stall; end end // pipeline control for ECC_ENABLE = 3 else begin if(!i_wb_cyc && final_calibration_done) begin o_wb_stall_d = 1'b0; end else if(ecc_stage1_stall) begin o_wb_stall_d = 1'b1; end else if(!o_wb_stall_q && ( (!i_wb_stb && final_calibration_done) || (!calib_stb && !final_calibration_done) )) begin o_wb_stall_d = 1'b0; end else if(stage0_pending) begin o_wb_stall_d = !stage2_update || stage1_stall; end else begin if(o_wb_stall_q || !stage1_pending) begin o_wb_stall_d = stage2_stall; end else begin o_wb_stall_d = stage1_stall; end end end end //end of always block assign o_phy_cmd = {cmd_d[3], cmd_d[2], cmd_d[1], cmd_d[0]}; // register previous value of cmd_ck_en always @(posedge i_controller_clk) begin if(sync_rst_controller) begin prev_cmd_ck_en <= 0; end else begin prev_cmd_ck_en <= cmd_ck_en; end end /*********************************************************************************************************************************************/ /******************************************************* Align Read Data from ISERDES *******************************************************/ always @(posedge i_controller_clk) begin if(sync_rst_controller) begin index_read_pipe <= 0; index_wb_data <= 0; write_dqs_val <= 0; write_dqs_q <= 0; write_dqs <= 0; write_dq_q <= 0; write_dq <= 0; write_ack_index_q <= 1; if(ECC_ENABLE == 1 || ECC_ENABLE == 2) begin o_wb_ack_q <= 0; o_wb_ack_uncalibrated <= 0; end for(index = 0; index < 2; index = index + 1) begin delay_read_pipe[index] <= 0; end for(index = 0; index < 2; index = index + 1) begin o_wb_data_q[index] <= 0; end for(index = 0; index < READ_ACK_PIPE_WIDTH; index = index + 1) begin shift_reg_read_pipe_q[index] <= 0; end for(index = 0; index < MAX_ADDED_READ_ACK_DELAY ; index = index + 1) begin o_wb_ack_read_q[index] <= 0; end end else begin if(ODELAY_SUPPORTED) begin write_dqs_val[0] <= write_dqs_d || write_dqs_q[0]; end else begin write_dqs_val[0] <= write_dqs_d || write_dqs_q[0] || write_dqs_q[1]; end write_dqs_q[0] <= write_dqs_d; write_dqs_q[1] <= write_dqs_q[0]; write_dqs[0] <= write_dqs_d || write_dqs_q[0] || write_dqs_q[1]; //high for 3 clk cycles write_dq_q[0] <= write_dq_d; write_dq_q[1] <= write_dq_q[0]; write_dq[0] <= write_dq_d || write_dq_q[0] || write_dq_q[1]; //high for 3 clk cycles for(index = 0; index < STAGE2_DATA_DEPTH; index = index+1) begin //increase by 1 to accomodate postamble write_dqs[index+1] <= write_dqs[index]; write_dqs_val[index+1] <= write_dqs_val[index]; end for(index = 0; index < STAGE2_DATA_DEPTH+1; index = index+1) begin //increase by 1 to accomodate postamble write_dq[index+1] <= write_dq[index]; end for(index = 0; index < READ_ACK_PIPE_WIDTH; index = index + 1) begin // shifted rightward where LSB gets MSB ([MSB] -> [] -> [] -> .... -> [] -[LSB]) shift_reg_read_pipe_q[index] <= shift_reg_read_pipe_d[index]; end write_ack_index_q <= write_ack_index_d; // determines next index in pipe for write ack for(index = 0; index < 2; index = index + 1) begin // there are 2 read_pipes (each with 16 space for shifting), and each read pipes shift rightward // so the bit 1 will be shifted to the right until it reach LSB which means data is already on ISERDES output of PHY delay_read_pipe[index] <= (delay_read_pipe[index] >> 1); end if(shift_reg_read_pipe_q[1][0] || shift_reg_read_pipe_q[1][AUX_WIDTH]) begin //delay from shift_reg_read_pipe_q is about to be over (ack, which is the last bit, will be at LSB on next clk cycle OR MSB is high for ECC req) //and data is now starting to be released from ISERDES from phy BUT NOT YET ALIGNED index_read_pipe <= !index_read_pipe; //control which delay_read_pipe would get updated (we have 2 read_pipes to store read data,use the read_pipe alternatingly) delay_read_pipe[index_read_pipe][added_read_pipe_max] <= 1'b1; //update delay_read_pipe // NOTE: added_read_pipe_max can either be 0 or 1 (NOTE TO SELF: optimize by lowering the bit size of delay_read_pipe) // delay_read_pipe will get the ack bit from shift_reg_read_pipe_q[1] at the bit equal to // added_read_pipe_max (0th or 1st bit). added_read_pipe_max is the max number of added controller clk cycles among all lanes // So basically, the delay_read_pipe is the delay to make sure the "added_read_pipe_max" controller clk cycles // will be met. // Example: // So for request #1 (e.g. write request, added_read_pipe_max=1), wait until the shift_reg_read_pipe_q[1] goes // high (READ_ACK_PIPE_WIDTH of delay is met which means the data from ISERDES PHY is now available). The // delay_read_pipe[0][1] will then be high. This high bit on read_pipe #0 will get shifted to LSB. [1] -> [] -> [LSB] // Meanwhile when request #2 comes (e.g. read request, added_read_pipe_max=1), again wait until the shift_reg_read_pipe_q[1] goes // high. The delay_read_pipe[1][1] will then be high. This high bit on read_pipe #1 will get shifted to LSB. [1] -> [] -> [LSB] end for(index = 0; index < LANES; index = index + 1) begin /* verilator lint_off WIDTH */ // read_pipe #0 // NOTE: added_read_pipe_max and added_read_pipe can either be just 0 or 1 (NOTE TO SELF: optimize by lowering the bit size of this) // If the added_read_pipe (added number of controller clk cycles of delay to a lane due to pcb trace) is equal to the // max delay (added_read_pipe_max, e.g. 0-0 or 1-1) for this lane, THEN we need to wait until the bit 1 reaches the LSB[0] of delay_read_pipe // before retrieving the value from PHY. But if not the same (added_read_pipe is 0 while added_read_pipe_max is 1), then wait until // the bit 1 reaches the one before LSB [1] before retrieving the value from PHY, so this means this lane with 0 delay will FIRST BE RETRIEVED // while the lane with added_read_pipe_max of delay (delay of 1) will be retrieved SECOND if(delay_read_pipe[0][added_read_pipe_max != added_read_pipe[index]]) begin /* verilator lint_on WIDTH */ // o_wb_data[63:0] = BURST0: {LANE7,LANE6,LANE5,LANE4,LANE3,LANE2,LANE1,LANE0} // o_wb_data[127:64] = BURST1: {LANE7,LANE6,LANE5,LANE4,LANE3,LANE2,LANE1,LANE0} // o_wb_data[191:128] = BURST2: {LANE7,LANE6,LANE5,LANE4,LANE3,LANE2,LANE1,LANE0} o_wb_data_q[0][((DQ_BITS*LANES)*0 + 8*index) +: 8] <= i_phy_iserdes_data[((DQ_BITS*LANES)*0 + 8*index) +: 8]; //update lane for burst 0 o_wb_data_q[0][((DQ_BITS*LANES)*1 + 8*index) +: 8] <= i_phy_iserdes_data[((DQ_BITS*LANES)*1 + 8*index) +: 8]; //update lane for burst 1 o_wb_data_q[0][((DQ_BITS*LANES)*2 + 8*index) +: 8] <= i_phy_iserdes_data[((DQ_BITS*LANES)*2 + 8*index) +: 8]; //update lane for burst 2 o_wb_data_q[0][((DQ_BITS*LANES)*3 + 8*index) +: 8] <= i_phy_iserdes_data[((DQ_BITS*LANES)*3 + 8*index) +: 8]; //update lane for burst 3 o_wb_data_q[0][((DQ_BITS*LANES)*4 + 8*index) +: 8] <= i_phy_iserdes_data[((DQ_BITS*LANES)*4 + 8*index) +: 8]; //update lane for burst 4 o_wb_data_q[0][((DQ_BITS*LANES)*5 + 8*index) +: 8] <= i_phy_iserdes_data[((DQ_BITS*LANES)*5 + 8*index) +: 8]; //update lane for burst 5 o_wb_data_q[0][((DQ_BITS*LANES)*6 + 8*index) +: 8] <= i_phy_iserdes_data[((DQ_BITS*LANES)*6 + 8*index) +: 8]; //update lane for burst 6 o_wb_data_q[0][((DQ_BITS*LANES)*7 + 8*index) +: 8] <= i_phy_iserdes_data[((DQ_BITS*LANES)*7 + 8*index) +: 8]; //update lane for burst 7 end /* verilator lint_off WIDTH */ // read_pipe #1 // NOTE: added_read_pipe_max and added_read_pipe can either be just 0 or 1 (NOTE TO SELF: optimize by lowering the bit size of this) // If the added_read_pipe (added number of controller clk cycles of delay to a lane due to pcb trace) is equal to the // max delay (added_read_pipe_max, e.g. 0-0 or 1-1) for this lane, THEN we need to wait until the bit 1 reaches the LSB[0] of delay_read_pipe // before retrieving the value from PHY. But if not the same (added_read_pipe is 0 while added_read_pipe_max is 1), then wait until // the bit 1 reaches the one before LSB [1] (which goes high already since bit 1 of delay_read_pipe is the first to go high once shift_reg_read_pipe_q // bit 1 goes high) before retrieving the value from PHY. So this means this lane with 0 delay will FIRST BE RETRIEVED // while the lane with added_read_pipe_max of delay (delay of 1) will be retrieved SECOND if(delay_read_pipe[1][added_read_pipe_max != added_read_pipe[index]]) begin /* verilator lint_on WIDTH */ o_wb_data_q[1][((DQ_BITS*LANES)*0 + 8*index) +: 8] <= i_phy_iserdes_data[((DQ_BITS*LANES)*0 + 8*index) +: 8]; //update each lane of the burst o_wb_data_q[1][((DQ_BITS*LANES)*1 + 8*index) +: 8] <= i_phy_iserdes_data[((DQ_BITS*LANES)*1 + 8*index) +: 8]; //update each lane of the burst o_wb_data_q[1][((DQ_BITS*LANES)*2 + 8*index) +: 8] <= i_phy_iserdes_data[((DQ_BITS*LANES)*2 + 8*index) +: 8]; //update each lane of the burst o_wb_data_q[1][((DQ_BITS*LANES)*3 + 8*index) +: 8] <= i_phy_iserdes_data[((DQ_BITS*LANES)*3 + 8*index) +: 8]; //update each lane of the burst o_wb_data_q[1][((DQ_BITS*LANES)*4 + 8*index) +: 8] <= i_phy_iserdes_data[((DQ_BITS*LANES)*4 + 8*index) +: 8]; //update each lane of the burst o_wb_data_q[1][((DQ_BITS*LANES)*5 + 8*index) +: 8] <= i_phy_iserdes_data[((DQ_BITS*LANES)*5 + 8*index) +: 8]; //update each lane of the burst o_wb_data_q[1][((DQ_BITS*LANES)*6 + 8*index) +: 8] <= i_phy_iserdes_data[((DQ_BITS*LANES)*6 + 8*index) +: 8]; //update each lane of the burst o_wb_data_q[1][((DQ_BITS*LANES)*7 + 8*index) +: 8] <= i_phy_iserdes_data[((DQ_BITS*LANES)*7 + 8*index) +: 8]; //update each lane of the burst end // why are we alternatingly use the read_pipes? // time | 0 | 1 | 2 | 3 | // index_read_pipe | 1 | 0 | 1 | 0 | // delay_read_pipe[1] | [0][0] | <[1][0] | [0][1]> | [1][0] | // delay_read_pipe[0] | [0][0] | [0][0] | <[1][0] | [0][1]> | // // At time 1, request #1 is accepted by pipe[1], then wait until time 2 to retrieve the lane with longest added_read_pipe // (lane with added_read_pipe 0 is retrieved from ISERDES at time 1, lane with added_read_pipe 1 is retrieved from ISERDES at time 2) // At time 2, request #2 is accepted by pipe[0] (since pipe[1] is still busy on request #1), then wait until time 3 to retrieve // the lane with longest added_read_pipe // Thus pipe 0 and 1 is alternating to make sure that even if 0 is busy, 1 will retrieve the data. And then when 1 is busy, 0 will retrieve the data // NOTE TO SELF: longest delay for a lane relative to others is 1 controller clk cycle, if more than 1 then it will not be retrievd // and aligned properly. Thus try to optimize this logic since delay is at max 1 controller clk only. end // o_wb_ack_read_q[0][0] is also the wishbone ack (aligned with ack is the wishbone data) thus // after sending the wishbone data on a particular index, invert it for the next ack if(ECC_ENABLE != 3) begin if(o_wb_ack_read_q[0][0]) begin index_wb_data <= !index_wb_data; //alternatingly uses the o_wb_data_q (either 0 or 1) end end else begin // last bit of AUX is high if ECC request (wb ack does not go high at ECC reqs) if(o_wb_ack_read_q[0][0] || o_wb_ack_read_q[0][AUX_WIDTH]) begin index_wb_data <= !index_wb_data; //alternatingly uses the o_wb_data_q (either 0 or 1) end end for(index = 1; index < MAX_ADDED_READ_ACK_DELAY; index = index + 1) begin o_wb_ack_read_q[index-1] <= o_wb_ack_read_q[index]; // shift rightward [ack] -> [] -> [LSB] end o_wb_ack_read_q[MAX_ADDED_READ_ACK_DELAY-1] <= 0; // MSB always gets zero and is shifted rightwards o_wb_ack_read_q[added_read_pipe_max] <= shift_reg_read_pipe_q[0]; // o_wb_ack_read_q[0] is the wishbone ack // so once data is available from ISERDES (shift_reg_read_pipe_q[0] high) then need to wait added_read_pipe_max // before the data is properly stored to o_wb_data_q and can be sent outside as wishbone data // BASICALLY: // shift_reg_read_pipe_q is the delay from when the read command is issued from controller until the // data is received by the PHY ISERDES (total delay of READ_ACK_PIPE_WIDTH). The shift_reg_read_pipe_q[1] // is then connected to delay_read_pipe[added_read_pipe_max (0 or 1)] which is the delay to align the lanes. // The shift_reg_read_pipe_q[0] is then connected to o_wb_ack_read_q[added_read_pipe_max (0 or 1)] which // is the delay until the wishbone data and ack will be sent outside // NOTE TO SELF: Optimize by removing o_wb_ack_read_q and just connect the woshbone ack and data to delay_read_pipe[0]. // Visualization: // shift_reg_read_pipe_q [ ] -> [1] -> [ ] [ ] -> [ ] -> [1] [ ] -> [ ] -> [ ] [ ] -> [ ] -> [ ] // delay_read_pipe [ ] -> [ ] -> [ ] ---> [ ] -> [1] -> [ ] ---> [ ] -> [ ] -> [1] ---> [ ] -> [ ] -> [ ] // o_wb_ack_read_q [ ] -> [ ] -> [ ] [ ] -> [ ] -> [ ] [ ] -> [1] -> [ ] [ ] -> [ ] -> [1] // request is now on [1] request passed request passed o_wb_ack_read_q[0] // of shift_reg_read_pipe_q to delay_read_pipe to o_wb_ack_read_q high thus ready for wishbone ack // abort any outgoing ack when cyc is low if(!i_wb_cyc && final_calibration_done) begin for(index = 0; index < MAX_ADDED_READ_ACK_DELAY; index = index + 1) begin o_wb_ack_read_q[index] <= 0; end for(index = 0; index < READ_ACK_PIPE_WIDTH; index = index + 1) begin shift_reg_read_pipe_q[index] <= 0; end end if(ECC_ENABLE == 1 || ECC_ENABLE == 2) begin // added latency of 1 clock cycle for decoding the ECC o_wb_data <= o_wb_data_q_decoded; // Wishbone data output o_aux <= o_wb_ack_read_q[0][AUX_WIDTH:1]; // Aux output o_wb_data_uncalibrated <= o_wb_data_q_current; // Data is not ECC decoded when not yet done calibration o_wb_ack_uncalibrated <= o_wb_ack_read_q[0][0] && !final_calibration_done; // ack used during calibration o_wb_ack_q <= o_wb_ack_read_q[0][0] && final_calibration_done && i_wb_cyc; // ack used during normal operation o_wb_err_q <= db_err_o; // flag Wishbone error due to double bit error end end end assign o_wb_data_q_current = o_wb_data_q[index_wb_data]; generate if(ECC_ENABLE == 0) begin: ecc_disabled_wishbone_out always @* begin o_wb_data = o_wb_data_q_current; // Wishbone data output o_aux = o_wb_ack_read_q[0][AUX_WIDTH:1]; // Aux output o_wb_data_uncalibrated = o_wb_data; // wishbone data is also used when not yet done calibration o_wb_ack_uncalibrated = o_wb_ack_read_q[0][0] && !final_calibration_done; // ack used during calibration o_wb_ack_q = o_wb_ack_read_q[0][0] && final_calibration_done; // ack used during normal operation o_wb_err_q = 0; // no wishbone error when ECC is disabled end end else if(ECC_ENABLE == 3) begin: ecc_3_wishbone_out always @* begin o_wb_data = o_wb_data_q_decoded; // Wishbone data output o_aux = o_wb_ack_read_q[0][AUX_WIDTH:1]; // Aux output o_wb_data_uncalibrated = o_wb_data_q_current; // wishbone data is also used when not yet done calibration o_wb_ack_uncalibrated = o_wb_ack_read_q[0][0] && !final_calibration_done; // ack used during calibration o_wb_ack_q = o_wb_ack_read_q[0][0] && final_calibration_done; // ack used during normal operation o_wb_err_q = db_err_o; // wb error during double bit errors end end endgenerate generate if (WB_ERROR == 0) begin: wb_err_disabled assign o_wb_ack = o_wb_ack_q; assign o_wb_err = 1'b0; // no Wishbone error if WB_ERROR == 0 end else begin : wb_err_enabled // Wishbone B4 doc: // RULE 3.45 // If a SLAVE supports the [ERR_O] or [RTY_O] signals, then the SLAVE MUST NOT assert // more than one of the following signals at any time: [ACK_O], [ERR_O] or [RTY_O]. assign o_wb_ack = !o_wb_err_q && o_wb_ack_q ; assign o_wb_err = o_wb_err_q && o_wb_ack_q; end endgenerate // DQ/DQS IO tristate control logic always @(posedge i_controller_clk) begin o_phy_dqs_tri_control <= !write_dqs[STAGE2_DATA_DEPTH-1]; o_phy_dq_tri_control <= !write_dq[STAGE2_DATA_DEPTH-1]; end // assign o_phy_dqs_tri_control = !write_dqs[STAGE2_DATA_DEPTH]; // Warning in implementation: not routable to load // assign o_phy_dq_tri_control = !write_dq[STAGE2_DATA_DEPTH]; // Warning in implementation: not routable to load generate if(STAGE2_DATA_DEPTH >= 2) begin: TOGGLE_DQS assign o_phy_toggle_dqs = write_dqs_val[STAGE2_DATA_DEPTH-2]; end else begin: TOGGLE_DQS_DEPTH_LESS_2 assign o_phy_toggle_dqs = write_dqs_d || write_dqs_q[0]; end endgenerate /*********************************************************************************************************************************************/ /******************************************************* Read/Write Calibration Sequence *******************************************************/ reg[$clog2(wb_sel_bits)-1:0] write_by_byte_counter = 0; always @(posedge i_controller_clk) begin if(sync_rst_controller) begin state_calibrate <= IDLE; train_delay <= 0; dqs_store <= 0; dqs_count_repeat <= 0; dqs_start_index <= 0; dqs_target_index <= 0; dqs_target_index_orig <= 0; o_phy_bitslip <= 0; o_phy_odelay_data_ld <= 0; o_phy_odelay_dqs_ld <= 0; o_phy_idelay_data_ld <= 0; o_phy_idelay_dqs_ld <= 0; lane_times_8 <= 0; idelay_data_cntvaluein_prev <= 0; initial_dqs <= 1; lane <= 0; dqs_bitslip_arrangement <= 0; write_calib_dqs <= 0; write_calib_dq <= 0; write_calib_odt <= 0; prev_write_level_feedback <= 1; calib_stb <= 0;//actual request flag calib_sel <= 0; calib_aux <= 0; //AUX ID calib_we <= 0; //write-enable calib_addr <= 0; calib_data <= 0; pause_counter <= 0; read_data_store <= 0; write_pattern <= 0; added_read_pipe_max <= 0; dqs_start_index_stored <= 0; dqs_start_index_repeat <= 0; delay_before_write_level_feedback <= 0; delay_before_read_data <= 0; read_lane_data <= 0; o_phy_write_leveling_calib <= 0; odelay_cntvalue_halfway <= 0; write_level_fail <= 0; read_test_address_counter <= 0; write_test_address_counter <= 0; reset_from_calibrate <= 0; write_by_byte_counter <= 0; initial_calibration_done <= 1'b0; final_calibration_done <= 1'b0; reset_after_rank_1 <= 1'b0; lane_write_dq_late <= 0; lane_read_dq_early <= 0; for(index = 0; index < LANES; index = index + 1) begin added_read_pipe[index] <= 0; data_start_index[index] <= 0; odelay_data_cntvaluein[index] <= DATA_INITIAL_ODELAY_TAP[4:0]; odelay_dqs_cntvaluein[index] <= DQS_INITIAL_ODELAY_TAP[4:0]; idelay_data_cntvaluein[index] <= DATA_INITIAL_IDELAY_TAP[4:0]; idelay_dqs_cntvaluein[index] <= DQS_INITIAL_IDELAY_TAP[4:0]; dq_target_index[index] <= 0; end end else begin write_calib_dq <= 0; train_delay <= (train_delay==0)? 0:(train_delay - 1); delay_before_read_data <= (delay_before_read_data == 0)? 0: delay_before_read_data - 1; delay_before_write_level_feedback <= (delay_before_write_level_feedback == 0)? 0: delay_before_write_level_feedback - 1; o_phy_bitslip <= 0; o_phy_odelay_data_ld <= 0; o_phy_odelay_dqs_ld <= 0; o_phy_idelay_data_ld <= 0; o_phy_idelay_dqs_ld <= 0; /* verilator lint_off WIDTH */ lane_times_8 <= lane << 3; /* verilator lint_on WIDTH */ idelay_data_cntvaluein_prev <= idelay_data_cntvaluein[lane]; reset_from_calibrate <= 0; reset_after_rank_1 <= 0; // reset for dual rank if(wb2_update) begin odelay_data_cntvaluein[wb2_write_lane] <= wb2_phy_odelay_data_ld[wb2_write_lane]? wb2_phy_odelay_data_cntvaluein : odelay_data_cntvaluein[wb2_write_lane]; odelay_dqs_cntvaluein[wb2_write_lane] <= wb2_phy_odelay_dqs_ld[wb2_write_lane]? wb2_phy_odelay_dqs_cntvaluein : odelay_dqs_cntvaluein[wb2_write_lane]; idelay_data_cntvaluein[wb2_write_lane] <= wb2_phy_idelay_data_ld[wb2_write_lane]? wb2_phy_idelay_data_cntvaluein : idelay_data_cntvaluein[wb2_write_lane]; idelay_dqs_cntvaluein[wb2_write_lane] <= wb2_phy_idelay_dqs_ld[wb2_write_lane]? wb2_phy_idelay_dqs_cntvaluein : idelay_dqs_cntvaluein[wb2_write_lane]; o_phy_odelay_data_ld <= wb2_phy_odelay_data_ld; o_phy_odelay_dqs_ld <= wb2_phy_odelay_dqs_ld; o_phy_idelay_data_ld <= wb2_phy_idelay_data_ld; o_phy_idelay_dqs_ld <= wb2_phy_idelay_dqs_ld; lane <= wb2_write_lane; end else if(state_calibrate != DONE_CALIBRATE) begin // increase cntvalue every load to prepare for possible next load odelay_data_cntvaluein[lane] <= o_phy_odelay_data_ld[lane]? odelay_data_cntvaluein[lane] + 1: odelay_data_cntvaluein[lane]; odelay_dqs_cntvaluein[lane] <= o_phy_odelay_dqs_ld[lane]? odelay_dqs_cntvaluein[lane] + 1: odelay_dqs_cntvaluein[lane]; idelay_data_cntvaluein[lane] <= o_phy_idelay_data_ld[lane]? idelay_data_cntvaluein[lane] + 1: idelay_data_cntvaluein[lane]; idelay_dqs_cntvaluein[lane] <= o_phy_idelay_dqs_ld[lane]? idelay_dqs_cntvaluein[lane] + 1: idelay_dqs_cntvaluein[lane]; end // high initial_dqs is the time when the IDELAY of dqs and dq is not yet calibrated // dqs_target_index_value = dqs_start_index_stored[0]? dqs_start_index_stored + 2: dqs_start_index_stored + 1; // move to next odd (if 3 then 5, if 4 then 5) // so dqs_target_index_value is basically the next odd number of dqs_start_index_stored (original starting bit when dqs starts). // The next odd number ensure that the DQS edge is aligned to edge of ddr3_clk (and thus DQ data eye is aligned to edges of of ddr3_clk // since dq is 90 degree relative to dqs // Some images to show why next odd number is used: https://github.com/AngeloJacobo/UberDDR3/tree/b762c464f6526159c1d8c2e4ee039b4ae4e78dbd#per-lane-read-calibration if(initial_dqs) begin dqs_target_index <= dqs_target_index_value; // target index for DQS to make sure the DQS is edge-aligned with ddr3_clk dq_target_index[lane] <= {1'b0, dqs_target_index_value}; // target index for DQ (just same as DQS) dqs_target_index_orig <= dqs_target_index_value; // this will remain the same until we finish calibrating this whole lane end if(idelay_dqs_cntvaluein[lane] == 0) begin //the DQS got past cntvalue of 31 (and goes back to zero) THUS the target index should also go back (to previous odd) dqs_target_index <= dqs_target_index_orig - 2; end if(idelay_data_cntvaluein[lane] == 0 && idelay_data_cntvaluein_prev == 31) begin //the DQ got past cntvalue of 31 (and goes back to zero) thus the target index should also go back (to previous odd) dq_target_index[lane] <= dqs_target_index_orig - 2; end // FSM case(state_calibrate) IDLE: if(i_phy_idelayctrl_rdy && instruction_address == 13) begin //we are now inside instruction 15 with maximum delay state_calibrate <= BITSLIP_DQS_TRAIN_1; lane <= 0; o_phy_odelay_data_ld <= {LANES{1'b1}}; o_phy_odelay_dqs_ld <= {LANES{1'b1}}; o_phy_idelay_data_ld <= {LANES{1'b1}}; o_phy_idelay_dqs_ld <= {LANES{1'b1}}; pause_counter <= 1; //pause instruction address @13 until read calibration finishes write_calib_dqs <= 0; write_calib_odt <= 0; o_phy_write_leveling_calib <= 0; initial_calibration_done <= 1'b0; final_calibration_done <= 1'b0; end else if(instruction_address == 13) begin pause_counter <= 1; //pause instruction address @13 until read calibration finishes end BITSLIP_DQS_TRAIN_1: if(train_delay == 0) begin /* Bitslip cannot be asserted for two consecutive CLKDIV cycles; Bitslip must be deasserted for at least one CLKDIV cycle between two Bitslip assertions.The user logic should wait for at least two CLKDIV cycles in SDR mode or three CLKDIV cycles in DDR mode, before analyzing the received data pattern and potentially issuing another Bitslip command. If the ISERDESE2 is reset, the Bitslip logic is also reset and returns back to its initial state. */ // bitslip basically is changing the arrangement of bytes on IOSERDES if(i_phy_iserdes_bitslip_reference[lane*serdes_ratio*2 +: 8] == 8'b0111_1000) begin //initial arrangement state_calibrate <= MPR_READ; initial_dqs <= 1; dqs_start_index_repeat <= 0; dqs_start_index_stored <= 0; end else begin o_phy_bitslip[lane] <= 1; train_delay <= 3; end end MPR_READ: if(delay_before_read_data == 0) begin //align the incoming DQS during reads to the controller clock //issue_read_command = 1; /* verilator lint_off WIDTH */ delay_before_read_data <= READ_DELAY + 1 + 2 + 1 - 1; ///NOTE TO SELF: why these numbers? 1=issue command delay (OSERDES delay), 2 = ISERDES delay /* verilator lint_on WIDTH */ state_calibrate <= COLLECT_DQS; dqs_count_repeat <= 0; end COLLECT_DQS: if(delay_before_read_data == 0) begin // data from MPR read is now received by controller // dqs from ISERDES is received and stored // DQS received from ISERDES: { {LANE_1_burst_7, LANE_1_burst_6, ... , LANE_1_burst_0} , {LANE_0_burst_7, LANE_0_burst_6, ... , LANE_0_burst_0}} // NOTE TO SELF: WHY DQS IS DIVIDED PER LANE BUT DQ IS PER BURST ???? // dqs_store stores the 8 DQS (8 bursts) for a given lane but since the DQS might be shifted at next ddr3 clk cycles (due to trace delays), we must store the // 8 DQS multiple times (dictated by STORED_DQS_SIZE) dqs_store <= {i_phy_iserdes_dqs[serdes_ratio*2*lane +: 8], dqs_store[(STORED_DQS_SIZE*8-1):8]}; dqs_count_repeat <= dqs_count_repeat + 1; if(dqs_count_repeat == STORED_DQS_SIZE - 1) begin state_calibrate <= ANALYZE_DQS; // store the previous value of dqs_start_index, if the ANALYZE_DQS is repeated then the dqs_start_index // should be the same as the previous value, else the previous (or current one) has a glitch causing // a different dqs_start_index dqs_start_index_stored <= dqs_start_index; // start the index from zero since this will be incremented until we pinpoint the real // starting bit of dqs_store (dictated by the pattern 10'b01_01_01_01_00) dqs_start_index <= 0; end end // find the bit where the DQS starts to be issued (by finding when the pattern 10'b01_01_01_01_00 starts) ANALYZE_DQS: if(dqs_store[dqs_start_index +: 10] == 10'b01_01_01_01_00) begin //increase dqs_start_index_repeat when index is the same as before dqs_start_index_repeat <= (dqs_start_index == dqs_start_index_stored)? dqs_start_index_repeat + 1: 0; //the same dqs_start_index_repeat appeared REPEAT_DQS_ANALYZE times in a row, thus we can trust the value we got is accurate and not affected by glitch if(dqs_start_index_repeat == REPEAT_DQS_ANALYZE) begin // since we already know the starting bit when the dqs (and dq since they are aligned) will come, // we will now start calibrating the IDELAY for dqs and dq (via CALIBRATE_DQS). // high initial_dqs is the time when the IDELAY of dqs and dq is not yet calibrated so we zero this starting now initial_dqs <= 0; dqs_start_index_repeat <= 0; state_calibrate <= CALIBRATE_DQS; end else begin state_calibrate <= MPR_READ; end end else begin if(dqs_start_index == (STORED_DQS_SIZE*8-1) ) begin //if we reached end then most likely we hit a glitch where 01_01_01_01_00 is muddied o_phy_idelay_data_ld[lane] <= 1; o_phy_idelay_dqs_ld[lane] <= 1; state_calibrate <= MPR_READ; delay_before_read_data <= 10; //wait for sometime to make sure idelay load settles end else begin dqs_start_index <= dqs_start_index + 1; end end // check if the index when the dqs starts is the same as the target index which is aligned to the ddr3_clk // dqs_target_index is the next odd number to dqs_start_index BEFORE IDELAY CALIBRATION. We will increase the IDELAY // until the dqs_start_index_stored (current value of dqs_start_index) matches the target index which is aligned to ddr3_clk CALIBRATE_DQS: if(dqs_start_index_stored == dqs_target_index) begin // dq_target_index still stores the original dqs_target_index_value. The bit size of dq_target_index is just enough // to count the bits in dqs_store (the received 8 DQS stored STORED_DQS_SIZE times) added_read_pipe[lane] <= { {( 4 - ($clog2(STORED_DQS_SIZE*8) - (3+1)) ){1'b0}} , dq_target_index[lane][$clog2(STORED_DQS_SIZE*8)-1:(3+1)] } + { 3'b0 , (dq_target_index[lane][3:0] >= (5+8)) }; // if target_index is > 13, then a 1 CONTROLLLER_CLK cycle delay (4 ddr3_clk cycles) is added on that particular lane (due to trace delay) // added_read_pipe[lane] <= dq_target_index[lane][$clog2(STORED_DQS_SIZE*8)-1 : (4)] + ( dq_target_index[lane][3:0] >= 13 ) ; dqs_bitslip_arrangement <= 16'b0011_1100_0011_1100 >> dq_target_index[lane][2:0]; // the dqs is delayed (to move starting bit to next odd number) so this means the original // expected bitslip arrangement of 8'b0111_1000 will not be followed anymore, so here we form the bitslip // arrangement pattern so incoming dqs (and thus DQ) is arranged in the proper way (first bute firs, last byte last) state_calibrate <= BITSLIP_DQS_TRAIN_2; end else begin // if we have not yet reached the target index then increment IDELAY // we will keep incrementing the IDELAY until the next odd index is reached (which is // the time we are sure the DQS is edge aligned with ddr3_clk and thus ddr3_clk posedge // is hitting the center of DQ eye // To show why next odd number is needed: https://github.com/AngeloJacobo/UberDDR3/tree/b762c464f6526159c1d8c2e4ee039b4ae4e78dbd#per-lane-read-calibration o_phy_idelay_data_ld[lane] <= 1; o_phy_idelay_dqs_ld[lane] <= 1; state_calibrate <= MPR_READ; delay_before_read_data <= 10; //wait for sometime to make sure idelay load settles end //the dqs is delayed (to move starting bit to next odd number) so this means the original // expected bitslip arrangement of 8'b0111_1000 will not be followed anymore, so here the bitslip // is re-arranged BITSLIP_DQS_TRAIN_2: if(train_delay == 0) begin //train again the ISERDES to capture the DQ correctly if(i_phy_iserdes_bitslip_reference[lane*serdes_ratio*2 +: 8] == dqs_bitslip_arrangement[7:0]) begin /* verilator lint_off WIDTH */ // this is the end of training and calibration for a single lane, so proceed to next lane if(lane == LANES - 1) begin /* verilator lint_on WIDTH */ pause_counter <= 0; //read calibration now complete so continue the reset instruction sequence lane <= 0; odelay_cntvalue_halfway <= 0; prev_write_level_feedback <= 1'b1; sample_clk_repeat <= 0; stored_write_level_feedback <= 0; o_phy_write_leveling_calib <= 1; state_calibrate <= START_WRITE_LEVEL; end else begin lane <= lane + 1; state_calibrate <= BITSLIP_DQS_TRAIN_1;// current lane is done so go back to BITSLIP_DQS_TRAIN_1 to train next lane end // stores the highest value of added_read_pipe among the lanes since all lanes (except the lane with highest // added_read_pipe) will be delayed to align with the lane with highest added_read_pipe. This alignment // is required to make sure the received DQ will be aligned and can form the 512 bit data (for 8 lanes) arranged properly. added_read_pipe_max <= added_read_pipe_max > added_read_pipe[lane]? added_read_pipe_max:added_read_pipe[lane]; end else begin o_phy_bitslip[lane] <= 1; train_delay <= 3; end end // CONTINUE COMMENT HERE (once blog is done) START_WRITE_LEVEL: if(!ODELAY_SUPPORTED) begin //skip write levelling if ODELAY is not supported pause_counter <= 0; lane <= 0; state_calibrate <= ISSUE_WRITE_1; write_calib_odt <= 0; o_phy_write_leveling_calib <= 0; end else if(instruction_address == 17) begin write_calib_dqs <= 1'b1; write_calib_odt <= 1'b1; delay_before_write_level_feedback <= DELAY_BEFORE_WRITE_LEVEL_FEEDBACK[$clog2(DELAY_BEFORE_WRITE_LEVEL_FEEDBACK):0]; state_calibrate <= WAIT_FOR_FEEDBACK; pause_counter <= 1; // pause instruction address @17 until write calibration finishes end WAIT_FOR_FEEDBACK: if(delay_before_write_level_feedback == 0) begin /* verilator lint_off WIDTH */ //_verilator warning: Bit extraction of var[511:0] requires 9 bit index, not 3 bits (but [lane<<3] is much simpler and cleaner) sample_clk_repeat <= (i_phy_iserdes_data[lane_times_8] == stored_write_level_feedback)? sample_clk_repeat + 1 : 0; //sample_clk_repeat should get the same response stored_write_level_feedback <= i_phy_iserdes_data[lane_times_8]; write_calib_dqs <= 0; if(sample_clk_repeat == REPEAT_CLK_SAMPLING) begin sample_clk_repeat <= 0; prev_write_level_feedback <= stored_write_level_feedback; if(({prev_write_level_feedback, stored_write_level_feedback} == 2'b01) /*|| write_level_fail[lane]*/) begin /* verilator lint_on WIDTH */ /* verilator lint_off WIDTH */ if(lane == LANES - 1) begin /* verilator lint_on WIDTH */ write_calib_odt <= 0; pause_counter <= 0; //write calibration now complete so continue the reset instruction sequence lane <= 0; o_phy_write_leveling_calib <= 0; state_calibrate <= ISSUE_WRITE_1; end else begin lane <= lane + 1; odelay_cntvalue_halfway <= 0; prev_write_level_feedback <= 1'b1; sample_clk_repeat <= 0; state_calibrate <= START_WRITE_LEVEL; end end else begin o_phy_odelay_data_ld[lane] <= 1; o_phy_odelay_dqs_ld[lane] <= 1; write_level_fail[lane] <= odelay_cntvalue_halfway; // if(odelay_cntvalue_halfway) begin // if halfway cntvalue is reached which is illegal (or impossible to happen), then we load the original cntvalues // odelay_data_cntvaluein[lane] <= DATA_INITIAL_ODELAY_TAP[4:0]; // odelay_dqs_cntvaluein[lane] <= DQS_INITIAL_ODELAY_TAP[4:0]; // end state_calibrate <= START_WRITE_LEVEL; end end end ISSUE_WRITE_1: if(instruction_address == 22 && !o_wb_stall_calib) begin calib_stb <= 1;//actual request flag calib_aux <= 0; //AUX ID to determine later if ACK is for read or write calib_sel <= {wb_sel_bits{1'b1}}; calib_we <= 1; //write-enable calib_addr <= 0; // burst_7 burst_6 burst_5 burst_4 burst_3 burst_2 burst_1 burst_0 calib_data <= { {LANES{8'h91}}, {LANES{8'h77}}, {LANES{8'h29}}, {LANES{8'h8c}}, {LANES{8'hd0}}, {LANES{8'had}}, {LANES{8'h51}}, {LANES{8'hc1}} }; // write to address 0 is a burst of 8 writes, where all lanes has same data written: 64'h9177298cd0ad51c1 // Example for LANES of 2, DQ of 8: the 128 bits (8 bursts * 2 lanes/burst * 8bits/lane) are 8 bursts with 8 bytes each: // { burst_7, burst_6, burst_5, burst_4, burst_3, burst_2, burst_1, burst_0 } OR: // { { {burst7_lane1} , {burst7_lane0} } , { {burst6_lane1} , {burst6_lane0} } , { {burst5_lane1} , {burst5_lane0} } // , { {burst4_lane1} , {burst4_lane0} } , { {burst3_lane1} , {burst3_lane0} } , { {burst2_lane1} , {burst2_lane0} } // , { {burst1_lane1} , {burst1_lane0} } , { {burst0_lane1} , {burst0_lane0} } } state_calibrate <= ISSUE_WRITE_2; end ISSUE_WRITE_2: begin calib_stb <= 1;//actual request flag calib_aux <= 0; //AUX ID to determine later if ACK is for read or write calib_sel <= {wb_sel_bits{1'b1}}; calib_we <= 1; //write-enable calib_addr <= 1; // burst_7 burst_6 burst_5 burst_4 burst_3 burst_2 burst_1 burst_0 calib_data <= { {LANES{8'h80}}, {LANES{8'hdb}}, {LANES{8'hcf}}, {LANES{8'hd2}}, {LANES{8'h75}}, {LANES{8'hf1}}, {LANES{8'h2c}}, {LANES{8'h3d}} }; // write to address 1 is also a burst of 8 writes, where all lanes has same data written: 128'h80dbcfd275f12c3d state_calibrate <= ISSUE_READ; end // NOTE: WHY THERE ARE TWO ISSUE_WRITE // address 0 and 1 is written with a deterministic data, if the DQ trace has long delay (relative to command line) then the data will be delayed // compared to the write command. Thus the data aligned to the write command for address 0 MIGHT START AT MIDDLE OF EXPECTED OUTPUT // DATA (64'h9177298cd0ad51c1) e.g. the data written might be 64'h[2c3d][9177298cd0ad] where the data written starts // at burst 2 (burst 0 and burst 1 are cut-off since each burst uses 1 ddr3_clk cycle) // Note here that if DQ and DQS sa same delay, then we know the DQS will always be aligned with DQ data ISSUE_READ: begin calib_stb <= 1;//actual request flag calib_aux <= 1; //AUX ID to determine later if ACK is for read or write calib_we <= 0; //write-enable calib_addr <= 0; state_calibrate <= READ_DATA; end // ISSUE_READ_2: begin // calib_stb <= 1;//actual request flag // calib_aux <= 1; //AUX ID to determine later if ACK is for read or write // calib_we <= 0; //write-enable // calib_addr <= 1; // state_calibrate <= READ_DATA; // end READ_DATA: if({o_aux[AUX_WIDTH-((ECC_ENABLE == 3)? 6 : 1) : 0], o_wb_ack_uncalibrated}== {{(AUX_WIDTH-((ECC_ENABLE == 3)? 6 : 1)){1'b0}}, 1'b1, 1'b1}) begin //wait for the read ack (which has AUX ID of 1} read_data_store <= o_wb_data_uncalibrated; // read data on address 0 calib_stb <= 0; state_calibrate <= ANALYZE_DATA; // data_start_index[lane] <= 0; // dont set to zero since this may have been already set by previous CHECK_STARTING_DATA // Possible Patterns (strong autocorrel stat) //0x80dbcfd275f12c3d //0x9177298cd0ad51c1 //0x01b79fa4ebe2587b //0x22ee5319a15aa382 write_pattern <= 128'h80dbcfd275f12c3d_9177298cd0ad51c1; end else if(!o_wb_stall_calib) begin calib_stb <= 0; end // extract burst_0-to-burst_7 data for a specified lane then determine which byte in write_pattern does it starts (ASSUMPTION: the DQ is too early [3d_9177298cd0ad51]c1 is written) // NOTE TO SELF: all "8" here assume DQ_BITS are 8? parameterize this properly // data_start_index for a specified lane determine how many bits are off the data from the write command // so for every 1 ddr3 clk cycle delay of DQ from write command, each lane will be 1 burst off: // e.g. LANE={burst7, burst6, burst5, burst4, burst3, burst2, burst1, burst0} then with 1 ddr3 cycle delay between DQ and command // burst0 will not be written but only starting on burst1 // if lane_write_dq_late is already set to 1 for this lane, then current lane should already be fixed without changing the data_start_index ANALYZE_DATA: if(write_pattern[ (lane_write_dq_late[lane]? 0 : data_start_index[lane]) +: 64] == {read_data_store[((DQ_BITS*LANES)*7 + 8*lane) +: 8], read_data_store[((DQ_BITS*LANES)*6 + 8*lane) +: 8], read_data_store[((DQ_BITS*LANES)*5 + 8*lane) +: 8], read_data_store[((DQ_BITS*LANES)*4 + 8*lane) +: 8], read_data_store[((DQ_BITS*LANES)*3 + 8*lane) +: 8], read_data_store[((DQ_BITS*LANES)*2 + 8*lane) +: 8],read_data_store[((DQ_BITS*LANES)*1 + 8*lane) +: 8],read_data_store[((DQ_BITS*LANES)*0 + 8*lane) +: 8] }) begin /* verilator lint_off WIDTH */ if(lane == LANES - 1) begin /* verilator lint_on WIDTH */ state_calibrate <= BIST_MODE == 0? FINISH_READ : BURST_WRITE; // go straight to FINISH_READ if BIST_MODE == 0 initial_calibration_done <= 1'b1; end else begin lane <= lane + 1; data_start_index[lane+1] <= 0; end end else begin data_start_index[lane] <= data_start_index[lane] + 8; //skip by 8 (basically we want to delay DQ since it was too early) if(lane_write_dq_late[lane] && lane_read_dq_early[lane]) begin // both assumption is wrong so we reset the controller reset_from_calibrate <= 1; end // first assumption (write DQ is late) is wrong so we repeat write-read with data_start_index back to 0 else if(lane_write_dq_late[lane]) begin data_start_index[lane] <= 0; // set delay to outgoing stage2_data back to zero if(data_start_index[lane] == 0) begin // if already set to zero then we already did write-read with default zero data_start_index, so we go to CHECK_STARTING_DATA to try second assumtpion state_calibrate <= CHECK_STARTING_DATA; end else begin // if not yet zero then we have to write-read again state_calibrate <= ISSUE_WRITE_1; end end //reached the end but STILL has error, issue might be WRITING TOO LATE (298cd0ad51c1XXXX is written) OR READING TOO EARLY ([9177]_298cd0ad51c1XXXX is read) else if(data_start_index[lane] == 56) begin data_start_index[lane] <= 0; start_index_check <= 0; state_calibrate <= CHECK_STARTING_DATA; end end // check when the 4 MSB of write_pattern {d0ad51c1} starts on read_lane_data (read_lane_data is just the concatenation of read_data_store of a specific lane) // assumption here read_lane_data ~= 298cd0ad51c1XXXX is written: either because we write too late (thus we need to delay outgoing stage2_data) OR we read too early (thus we need to calibrate incoming iserdes_dq) CHECK_STARTING_DATA: begin /* verilator lint_off WIDTHTRUNC */ if(read_lane_data[start_index_check +: 32] == write_pattern[0 +: 32]) begin /* verilator lint_on WIDTHTRUNC */ // first assumption: controller DQ is late WHEN WRITING(THUS WE NEED TO CALIBRATE data_start_index of outgoing stage2_data) if(!lane_write_dq_late[lane]) begin // lane_write_dq_late is not yet set so we know this first assunmption is not yet tested state_calibrate <= ISSUE_WRITE_1; // start writing again (the next write should fix the late DQ for this current lane) data_start_index[lane] <= 64 - start_index_check; // stage2_data_unaligned is forwarded to stage[1] so we are now 8-bursts early, so we subtract from 64 so the burst we will be forwarded to the tip of stage2_data lane_write_dq_late[lane] <= 1'b1; end // if first assumption is not the fix then second assmption: controller reads the DQ too early (THUS WE NEED TO CALIBRATE INCOMING DQ SIGNAL starting from bitslip training) else begin lane_read_dq_early[lane] <= 1'b1; // set to 1 to see later what lanes has this problem state_calibrate <= BITSLIP_DQS_TRAIN_3; added_read_pipe[lane] <= { {( 4 - ($clog2(STORED_DQS_SIZE*8) - (3+1)) ){1'b0}} , dq_target_index[lane][$clog2(STORED_DQS_SIZE*8)-1:(3+1)] } + { 3'b0 , (dq_target_index[lane][3:0] >= (5+8)) }; dqs_bitslip_arrangement <= 16'b0011_1100_0011_1100 >> dq_target_index[lane][2:0]; end end else begin start_index_check <= start_index_check + 16; // plus 16, we assume here that DQ will be late BY 1 DDR3 CLK CYCLE (if only +8, then it will be late by half DDR3 cycle, that should NOT happen) dq_target_index[lane] <= dq_target_index[lane] + 2; if(start_index_check == 48)begin //if value is too high, we are outside the possible values so we need to reset now reset_from_calibrate <= 1; end end end BITSLIP_DQS_TRAIN_3: if(train_delay == 0) begin //train again the ISERDES to capture the DQ correctly if(i_phy_iserdes_bitslip_reference[lane*serdes_ratio*2 +: 8] == dqs_bitslip_arrangement[7:0]) begin state_calibrate <= ISSUE_WRITE_1; //finished bitslip calibration so we can now issue again new write and then read added_read_pipe_max <= added_read_pipe_max > added_read_pipe[lane]? added_read_pipe_max:added_read_pipe[lane]; end else begin o_phy_bitslip[lane] <= 1; train_delay <= 3; end end /* WRITE_ZERO: if(!o_wb_stall_calib) begin //write zero to all addresses before starting write-read test calib_stb <= 1; calib_aux <= 2; calib_sel <= {wb_sel_bits{1'b1}}; calib_we <= 1; calib_addr <= write_test_address_counter[wb_addr_bits-1:0]; calib_data <= 0; write_test_address_counter <= write_test_address_counter + 1; if(MICRON_SIM) begin if(write_test_address_counter[wb_addr_bits-1:0] == 999 ) begin state_calibrate <= BURST_WRITE; calib_stb <= 0; calib_aux <= 0; calib_we <= 0; write_test_address_counter <= 0; end end else begin if(write_test_address_counter[wb_addr_bits-1:0] == {(wb_addr_bits){1'b1}} ) begin state_calibrate <= BURST_WRITE; calib_stb <= 0; calib_aux <= 0; calib_we <= 0; write_test_address_counter <= 0; end end end*/ BURST_WRITE: if(!o_wb_stall_calib) begin // Test 1: Burst write (per byte write to test datamask feature), then burst read calib_stb <= !write_test_address_counter[wb_addr_bits]; // create request only at the valid address space calib_aux <= 2; if(TDQS == 0 && ECC_ENABLE == 0) begin //Test datamask by writing 1 byte at a time calib_sel <= 1 << write_by_byte_counter; calib_we <= 1; calib_addr <= write_test_address_counter[wb_addr_bits-1:0]; calib_data <= {wb_sel_bits{8'haa}}; // calib_data[8*write_by_byte_counter +: 8] <= write_test_address_counter[7:0]; calib_data[8*write_by_byte_counter +: 8] <= calib_data_randomized[8*write_by_byte_counter +: 8]; if(write_by_byte_counter == {$clog2(wb_sel_bits){1'b1}}) begin write_test_address_counter <= MICRON_SIM? write_test_address_counter + (2**SIM_ADDRESS_INCR_LOG2) : write_test_address_counter + 1; // at BIST_MODE=1, this will create 128 writes /* verilator lint_off WIDTHEXPAND */ if((write_test_address_counter[wb_addr_bits-1:0] - MICRON_SIM == { {2{BIST_MODE[1]}} , {(wb_addr_bits-2){1'b1}} }) && (MICRON_SIM? (write_test_address_counter != 0) : 1)) begin //MUST END AT ODD NUMBER /* verilator lint_on WIDTHEXPAND */ if(BIST_MODE == 2) begin // mode 2 = burst write-read the WHOLE address space so always set the address counter back to zero write_test_address_counter <= 0; end state_calibrate <= BURST_READ; end end write_by_byte_counter <= write_by_byte_counter + 1; end else begin // Straight burst to all bytes (all datamask on) calib_sel <= {wb_sel_bits{1'b1}}; calib_we <= 1; calib_addr <= write_test_address_counter[wb_addr_bits-1:0]; // calib_data <= {wb_sel_bits{write_test_address_counter[7:0]}}; calib_data <= calib_data_randomized; write_test_address_counter <= MICRON_SIM? write_test_address_counter + (2**SIM_ADDRESS_INCR_LOG2) : write_test_address_counter + 1; // at BIST_MODE=1, this will create 128 writes /* verilator lint_off WIDTHEXPAND */ if((write_test_address_counter[wb_addr_bits-1:0] - MICRON_SIM == { {2{BIST_MODE[1]}} , {(wb_addr_bits-2){1'b1}} }) && (MICRON_SIM? (write_test_address_counter != 0) : 1)) begin //MUST END AT ODD NUMBER /* verilator lint_on WIDTHEXPAND */ if(BIST_MODE == 2) begin // mode 2 = burst write-read the WHOLE address space so always set the address counter back to zero write_test_address_counter <= 0; end state_calibrate <= BURST_READ; end end end BURST_READ: if(!o_wb_stall_calib) begin calib_stb <= !read_test_address_counter[wb_addr_bits]; // create request only at the valid address space calib_aux <= 3; calib_we <= 0; calib_addr <= read_test_address_counter[wb_addr_bits-1:0]; read_test_address_counter <= MICRON_SIM? read_test_address_counter + (2**SIM_ADDRESS_INCR_LOG2) : read_test_address_counter + 1; // at BIST_MODE=1, this will create 128 reads /* verilator lint_off WIDTHEXPAND */ if((read_test_address_counter - MICRON_SIM == { {2{BIST_MODE[1]}} , {(wb_addr_bits-2){1'b1}} }) && (MICRON_SIM? (read_test_address_counter != 0) : 1)) begin //MUST END AT ODD NUMBER /* verilator lint_on WIDTHEXPAND */ if(BIST_MODE == 2) begin // mode 2 = burst write-read the WHOLE address space so always set the address counter back to zero read_test_address_counter <= 0; end state_calibrate <= RANDOM_WRITE; end end RANDOM_WRITE: if(!o_wb_stall_calib) begin // Test 2: Random write (increments row address to force precharge-act-r/w) then random read calib_stb <= !write_test_address_counter[wb_addr_bits]; // create request only at the valid address space calib_aux <= 2; calib_sel <= {wb_sel_bits{1'b1}}; calib_we <= 1; calib_addr[ (ROW_BITS + BA_BITS + COL_BITS- $clog2(serdes_ratio*2) - 1 + DUAL_RANK_DIMM) : (BA_BITS + COL_BITS- $clog2(serdes_ratio*2) + DUAL_RANK_DIMM) ] <= write_test_address_counter[ROW_BITS-1:0]; // store row calib_addr[(BA_BITS + COL_BITS- $clog2(serdes_ratio*2) - 1 + DUAL_RANK_DIMM) : 0] <= write_test_address_counter[wb_addr_bits-1:ROW_BITS]; // store bank + col // calib_data <= {wb_sel_bits{write_test_address_counter[7:0]}}; calib_data <= calib_data_randomized; write_test_address_counter <= MICRON_SIM? write_test_address_counter + (2**SIM_ADDRESS_INCR_LOG2) : write_test_address_counter + 1; // at BIST_MODE=1, this will create 128 writes /* verilator lint_off WIDTHEXPAND */ if((write_test_address_counter[wb_addr_bits-1:0] - MICRON_SIM == { 1'b1, BIST_MODE[1] , {(wb_addr_bits-2){1'b1}} }) && (MICRON_SIM? (write_test_address_counter != 0) : 1)) begin //MUST END AT ODD NUMBER since ALTERNATE_WRITE_READ must start at even /* verilator lint_on WIDTHEXPAND */ if(BIST_MODE == 2) begin // mode 2 = random write-read the WHOLE address space so always set the address counter back to zero write_test_address_counter <= 0; end state_calibrate <= RANDOM_READ; end end RANDOM_READ: if(!o_wb_stall_calib) begin calib_stb <= !read_test_address_counter[wb_addr_bits]; // create request only at the valid address space calib_aux <= 3; calib_we <= 0; calib_addr[ (ROW_BITS + BA_BITS + COL_BITS- $clog2(serdes_ratio*2) - 1 + DUAL_RANK_DIMM) : (BA_BITS + COL_BITS- $clog2(serdes_ratio*2) + DUAL_RANK_DIMM) ] <= read_test_address_counter[ROW_BITS-1:0]; // row calib_addr[(BA_BITS + COL_BITS- $clog2(serdes_ratio*2) - 1 + DUAL_RANK_DIMM) : 0] <= read_test_address_counter[wb_addr_bits-1:ROW_BITS]; // bank + col read_test_address_counter <= MICRON_SIM? read_test_address_counter + (2**SIM_ADDRESS_INCR_LOG2) : read_test_address_counter + 1; // at BIST_MODE=1, this will create 128 reads /* verilator lint_off WIDTHEXPAND */ if((read_test_address_counter - MICRON_SIM == { 1'b1 , BIST_MODE[1], {(wb_addr_bits-2){1'b1}} }) && (MICRON_SIM? (read_test_address_counter != 0) : 1)) begin //MUST END AT ODD NUMBER since ALTERNATE_WRITE_READ must start at even /* verilator lint_on WIDTHEXPAND */ if(BIST_MODE == 2) begin // mode 2 = random write-read the WHOLE address space so always set the address counter back to zero read_test_address_counter <= 0; end state_calibrate <= ALTERNATE_WRITE_READ; end end ALTERNATE_WRITE_READ: if(!o_wb_stall_calib) begin calib_stb <= !write_test_address_counter[wb_addr_bits]; // create request only at the valid address space calib_aux <= 2 + (calib_we? 1:0); //2 (write), 3 (read) calib_sel <= {wb_sel_bits{1'b1}}; calib_we <= !calib_we; // alternating write-read calib_addr <= write_test_address_counter[wb_addr_bits-1:0]; // calib_data <= {wb_sel_bits{write_test_address_counter[7:0]}}; calib_data <= calib_data_randomized; if(calib_we) begin // if current operation is write, then dont increment address since we wil read the same address next write_test_address_counter <= MICRON_SIM? write_test_address_counter + (2**SIM_ADDRESS_INCR_LOG2) : write_test_address_counter + 1; // at BIST_MODE=1, this will create 128 writes end /* verilator lint_off WIDTHEXPAND */ if((write_test_address_counter[wb_addr_bits-1:0] - MICRON_SIM == { 2'b11 , {(wb_addr_bits-2){1'b1}} }) && (MICRON_SIM? (write_test_address_counter != 0) : 1)) begin /* verilator lint_on WIDTHEXPAND */ train_delay <= 15; state_calibrate <= FINISH_READ; end end FINISH_READ: begin calib_stb <= 0; if(train_delay == 0) begin if(DUAL_RANK_DIMM[0]) begin if(instruction_address == 26) begin // only once self-refresh is waiting for exit will current rank is done final_calibration_done <= current_rank; // calibration is only done after calibration of 2nd rank reset_after_rank_1 <= !current_rank; // reset only if current rank is 1st rank if(current_rank) begin state_calibrate <= DONE_CALIBRATE; end end end else begin state_calibrate <= DONE_CALIBRATE; final_calibration_done <= 1'b1; end end end DONE_CALIBRATE: begin calib_stb <= 0; state_calibrate <= DONE_CALIBRATE; if(instruction_address == 5'd26) begin // Self-refresh Exit pause_counter <= user_self_refresh_q; // wait until user-self-refresh is disabled before continuing 25 (Self-refresh Exit) end else begin pause_counter <= 0; end end endcase `ifdef FORMAL_COVER state_calibrate <= DONE_CALIBRATE; `endif read_lane_data <= {read_data_store[((DQ_BITS*LANES)*7 + 8*lane) +: 8], read_data_store[((DQ_BITS*LANES)*6 + 8*lane) +: 8], read_data_store[((DQ_BITS*LANES)*5 + 8*lane) +: 8], read_data_store[((DQ_BITS*LANES)*4 + 8*lane) +: 8], read_data_store[((DQ_BITS*LANES)*3 + 8*lane) +: 8], read_data_store[((DQ_BITS*LANES)*2 + 8*lane) +: 8], read_data_store[((DQ_BITS*LANES)*1 + 8*lane) +: 8], read_data_store[((DQ_BITS*LANES)*0 + 8*lane) +: 8] }; //halfway value has been reached (illegal) and will go back to zero at next load if(odelay_data_cntvaluein[lane] == 15) begin odelay_cntvalue_halfway <= 1; end if(instruction_address == 19 || instruction_address == 23) begin //pre-stall delay before precharge all to finish all remaining requests pause_counter <= 1; // pause instruction address until pre-stall delay before refresh sequence finishes //skip to instruction address 20 (precharge all before refresh) when no pending requests anymore //toggle it for 1 clk cycle only if( !stage1_pending && !stage2_pending && ( (o_wb_stall && final_calibration_done) || (o_wb_stall_calib && state_calibrate != DONE_CALIBRATE) ) ) begin pause_counter <= 0; // pre-stall delay done since all remaining requests are completed end end if(repeat_test && final_calibration_done) begin //can only repeat test once calibration is over state_calibrate <= BURST_WRITE; read_test_address_counter <= 0; write_test_address_counter <= 0; end end end // generate calib_data for BIST // Uses different operations (XOR, addition, subtraction, bit rotation) to generate different values per byte. // When MICRON_SIM=1, then we use the relevant bits (7:0 will be zero since during simulation the increment is a large number) assign calib_data_randomized = { {(wb_sel_bits/8){write_test_address_counter[(MICRON_SIM? SIM_ADDRESS_INCR_LOG2:0) +: 8] ^ 8'hA5, // Byte 7 write_test_address_counter[(MICRON_SIM? SIM_ADDRESS_INCR_LOG2:0) +: 8] | 8'h1A, // Byte 7 write_test_address_counter[(MICRON_SIM? SIM_ADDRESS_INCR_LOG2:0) +: 8] & 8'h33, // Byte 5 write_test_address_counter[(MICRON_SIM? SIM_ADDRESS_INCR_LOG2:0) +: 8] ^ 8'h5A, // Byte 4 write_test_address_counter[(MICRON_SIM? SIM_ADDRESS_INCR_LOG2:0) +: 8] & 8'h21, // Byte 3 write_test_address_counter[(MICRON_SIM? SIM_ADDRESS_INCR_LOG2:0) +: 8] | 8'hC7, // Byte 1 write_test_address_counter[(MICRON_SIM? SIM_ADDRESS_INCR_LOG2:0) +: 8] ^ 8'h7E, // Byte 1 write_test_address_counter[(MICRON_SIM? SIM_ADDRESS_INCR_LOG2:0) +: 8] ^ 8'h3C}} // Byte 0 }; generate if(DUAL_RANK_DIMM[0]) begin : dual_rank_mux // logic for current_rank to track if rank 1 or rank 2 is being calibrated always @(posedge i_controller_clk) begin if(current_rank_rst) begin // dont reset at reset_after_rank_1 current_rank <= 1'b0; // start at rank 1 end else begin if(reset_after_rank_1) begin current_rank <= 1'b1; // switch to 2nd rank after reset end end end end endgenerate assign issue_read_command = (state_calibrate == MPR_READ && delay_before_read_data == 0); assign o_phy_odelay_data_cntvaluein = odelay_data_cntvaluein[lane]; assign o_phy_odelay_dqs_cntvaluein = odelay_dqs_cntvaluein[lane]; assign o_phy_idelay_data_cntvaluein = idelay_data_cntvaluein[lane]; assign o_phy_idelay_dqs_cntvaluein = idelay_dqs_cntvaluein[lane]; assign dqs_target_index_value = dqs_start_index_stored[0]? dqs_start_index_stored + 2: dqs_start_index_stored + 1; // move to next odd (if 3 then 5, if 4 then 5) // To show why next odd number is needed: https://github.com/AngeloJacobo/UberDDR3/tree/b762c464f6526159c1d8c2e4ee039b4ae4e78dbd#per-lane-read-calibration /*********************************************************************************************************************************************/ /******************************************************* Calibration Test Receiver *******************************************************/ reg[wb_data_bits-1:0] wrong_data = 0; wire[wb_data_bits-1:0] correct_data; generate if(ECC_ENABLE == 0 || ECC_ENABLE == 3) begin : ecc_enable_0_correct_data // assign correct_data = {wb_sel_bits{check_test_address_counter[7:0]}}; assign correct_data = { {(wb_sel_bits/8){check_test_address_counter[(MICRON_SIM? SIM_ADDRESS_INCR_LOG2:0) +: 8] ^ 8'hA5, // Byte 7 check_test_address_counter[(MICRON_SIM? SIM_ADDRESS_INCR_LOG2:0) +: 8] | 8'h1A, // Byte 7 check_test_address_counter[(MICRON_SIM? SIM_ADDRESS_INCR_LOG2:0) +: 8] & 8'h33, // Byte 5 check_test_address_counter[(MICRON_SIM? SIM_ADDRESS_INCR_LOG2:0) +: 8] ^ 8'h5A, // Byte 4 check_test_address_counter[(MICRON_SIM? SIM_ADDRESS_INCR_LOG2:0) +: 8] & 8'h21, // Byte 3 check_test_address_counter[(MICRON_SIM? SIM_ADDRESS_INCR_LOG2:0) +: 8] | 8'hC7, // Byte 1 check_test_address_counter[(MICRON_SIM? SIM_ADDRESS_INCR_LOG2:0) +: 8] ^ 8'h7E, // Byte 1 check_test_address_counter[(MICRON_SIM? SIM_ADDRESS_INCR_LOG2:0) +: 8] ^ 8'h3C }} // Byte 0 }; end else if(ECC_ENABLE == 1) begin : ecc_enable_1_correct_data wire[wb_data_bits-1:0] correct_data_orig; // assign correct_data_orig = {wb_sel_bits{check_test_address_counter[7:0]}}; assign correct_data_orig = { {(wb_sel_bits/8){check_test_address_counter[(MICRON_SIM? SIM_ADDRESS_INCR_LOG2:0) +: 8] ^ 8'hA5, // Byte 7 check_test_address_counter[(MICRON_SIM? SIM_ADDRESS_INCR_LOG2:0) +: 8] | 8'h1A, // Byte 7 check_test_address_counter[(MICRON_SIM? SIM_ADDRESS_INCR_LOG2:0) +: 8] & 8'h33, // Byte 5 check_test_address_counter[(MICRON_SIM? SIM_ADDRESS_INCR_LOG2:0) +: 8] ^ 8'h5A, // Byte 4 check_test_address_counter[(MICRON_SIM? SIM_ADDRESS_INCR_LOG2:0) +: 8] & 8'h21, // Byte 3 check_test_address_counter[(MICRON_SIM? SIM_ADDRESS_INCR_LOG2:0) +: 8] | 8'hC7, // Byte 1 check_test_address_counter[(MICRON_SIM? SIM_ADDRESS_INCR_LOG2:0) +: 8] ^ 8'h7E, // Byte 1 check_test_address_counter[(MICRON_SIM? SIM_ADDRESS_INCR_LOG2:0) +: 8] ^ 8'h3C}} // Byte 0 }; assign correct_data = {{(wb_data_bits-ECC_INFORMATION_BITS*8){1'b0}} , correct_data_orig[ECC_INFORMATION_BITS*8 - 1 : 0]}; //only ECC_INFORMATION_BITS are valid in o_wb_data end else if(ECC_ENABLE == 2) begin : ecc_enable_2_correct_data wire[wb_data_bits-1:0] correct_data_orig; // assign correct_data_orig = {wb_sel_bits{check_test_address_counter[7:0]}}; assign correct_data_orig = { {(wb_sel_bits/8){check_test_address_counter[(MICRON_SIM? SIM_ADDRESS_INCR_LOG2:0) +: 8] ^ 8'hA5, // Byte 7 check_test_address_counter[(MICRON_SIM? SIM_ADDRESS_INCR_LOG2:0) +: 8] | 8'h1A, // Byte 7 check_test_address_counter[(MICRON_SIM? SIM_ADDRESS_INCR_LOG2:0) +: 8] & 8'h33, // Byte 5 check_test_address_counter[(MICRON_SIM? SIM_ADDRESS_INCR_LOG2:0) +: 8] ^ 8'h5A, // Byte 4 check_test_address_counter[(MICRON_SIM? SIM_ADDRESS_INCR_LOG2:0) +: 8] & 8'h21, // Byte 3 check_test_address_counter[(MICRON_SIM? SIM_ADDRESS_INCR_LOG2:0) +: 8] | 8'hC7, // Byte 1 check_test_address_counter[(MICRON_SIM? SIM_ADDRESS_INCR_LOG2:0) +: 8] ^ 8'h7E, // Byte 1 check_test_address_counter[(MICRON_SIM? SIM_ADDRESS_INCR_LOG2:0) +: 8] ^ 8'h3C}} // Byte 0 }; assign correct_data = {{(wb_data_bits-ECC_INFORMATION_BITS){1'b0}} , correct_data_orig[ECC_INFORMATION_BITS - 1 : 0]}; //only ECC_INFORMATION_BITS are valid in o_wb_data end endgenerate always @(posedge i_controller_clk) begin if(sync_rst_controller) begin check_test_address_counter <= 0; correct_read_data <= 0; wrong_read_data <= 0; reset_from_test <= 0; end else begin reset_from_test <= 0; if(state_calibrate != DONE_CALIBRATE) begin if ( o_aux[2:0] == 3'd3 && o_wb_ack_uncalibrated ) begin //o_aux = 3 is for read from calibration if(o_wb_data == correct_data) begin correct_read_data <= correct_read_data + 1; end else begin wrong_read_data <= wrong_read_data + 1; wrong_data <= o_wb_data; reset_from_test <= !final_calibration_done; //reset controller when a wrong data is received (only when calibration is not yet done) end /* verilator lint_off WIDTHEXPAND */ check_test_address_counter <= check_test_address_counter + (MICRON_SIM? (2**SIM_ADDRESS_INCR_LOG2) : 1); /* verilator lint_on WIDTHEXPAND */ end end if(repeat_test) begin check_test_address_counter <= 0; correct_read_data <= 0; wrong_read_data <= 0; end end end /*********************************************************************************************************************************************/ /******************************************************* Wishbone 2 (PHY) Interface *******************************************************/ generate if(SECOND_WISHBONE) begin : use_second_wishbone // When running in DDR3-1600, disable SECOND_WISHBONE to pass timing always @(posedge i_controller_clk) begin if(sync_rst_wb2) begin wb2_stb <= 0; wb2_we <= 0; //data to be written which must have high i_wb2_sel are: {LANE_NUMBER, CNTVALUEIN} wb2_addr <= 0; wb2_data <= 0; wb2_sel <= 0; end else begin if( (i_wb2_cyc && SECOND_WISHBONE) && !o_wb2_stall) begin wb2_stb <= i_wb2_stb; wb2_we <= i_wb2_we; //data to be written which must have high i_wb2_sel are: {LANE_NUMBER, CNTVALUEIN} wb2_addr <= i_wb2_addr; wb2_data <= i_wb2_data; wb2_sel <= i_wb2_sel; end else if(!o_wb2_stall) begin wb2_stb <= 0; wb2_we <= 0; wb2_addr <= 0; wb2_data <= 0; wb2_sel <= 0; end end end always @(posedge i_controller_clk) begin if(sync_rst_wb2) begin wb2_phy_odelay_data_cntvaluein <= 0; wb2_phy_odelay_data_ld <= 0; wb2_phy_odelay_dqs_cntvaluein <= 0; wb2_phy_odelay_dqs_ld <= 0; wb2_phy_idelay_data_cntvaluein <= 0; wb2_phy_idelay_data_ld <= 0; wb2_phy_idelay_dqs_cntvaluein <= 0; wb2_phy_idelay_dqs_ld <= 0; wb2_update <= 0; wb2_write_lane <= 0; o_wb2_ack <= 0; o_wb2_stall <= 1; o_wb2_data <= 0; reset_from_wb2 <= 0; repeat_test <= 0; end else begin wb2_phy_odelay_data_ld <= 0; wb2_phy_odelay_dqs_ld <= 0; wb2_phy_idelay_data_ld <= 0; wb2_phy_idelay_dqs_ld <= 0; wb2_update <= 0; wb2_write_lane <= 0; o_wb2_ack <= wb2_stb && (i_wb2_cyc && SECOND_WISHBONE); //always ack right after request o_wb2_stall <= 0; //never stall reset_from_wb2 <= 0; repeat_test <= 0; if(wb2_stb && (i_wb2_cyc && SECOND_WISHBONE)) begin case(wb2_addr[4:0]) //read/write odelay cntvalue for DQ line 0: if(wb2_we) begin wb2_phy_odelay_data_cntvaluein <= wb2_data[4:0]; //save first 5 bits as CNTVALUEIN for the ODELAYE2 for DQ wb2_phy_odelay_data_ld <= 1 << (wb2_data[5 +: lanes_clog2]); //raise the lane to be loaded with new cntvaluein wb2_update <= wb2_sel[$rtoi($ceil( (lanes_clog2 + 5)/8.0 )) - 1:0]; //only update when sel bit is high (data is valid) end else begin o_wb2_data <= { {(WB2_DATA_BITS-5){1'b0}} , odelay_data_cntvaluein[wb2_addr[4 +: lanes_clog2]] };//use next bits of address as lane number to be read end //read/write odelay cntvalue for DQS line 1: if(wb2_we) begin wb2_phy_odelay_dqs_cntvaluein <= wb2_data[4:0]; //save first 5 bits as CNTVALUEIN for the ODELAYE2 for DQS wb2_phy_odelay_dqs_ld <= 1 << (wb2_data[5 +: lanes_clog2]); //raise the lane to be loaded with new cntvaluein wb2_update <= wb2_sel[$rtoi($ceil( (lanes_clog2 + 5)/8.0 )) - 1:0]; //only update when sel bit is high (data is valid) end else begin o_wb2_data <= { {(WB2_DATA_BITS-5){1'b0}} , odelay_dqs_cntvaluein[wb2_addr[4 +: lanes_clog2]] };//use next bits of address as lane number to be read end //read/write idelay cntvalue for DQ line 2: if(wb2_we) begin wb2_phy_idelay_data_cntvaluein <= wb2_data[4:0]; //save first 5 bits as CNTVALUEIN for the IDELAYE2 for DQ wb2_phy_idelay_data_ld <= 1 << (wb2_data[5 +: lanes_clog2]); //save next 5 bits for lane number to be loaded with new delay wb2_update <= wb2_sel[$rtoi($ceil( (lanes_clog2 + 5)/8.0 )) - 1:0]; //only update when sel bit is high (data is valid) end else begin o_wb2_data <= { {(WB2_DATA_BITS-5){1'b0}} , idelay_data_cntvaluein[wb2_addr[4 +: lanes_clog2]] }; //use next bits of address as lane number to be read end //read/write idelay cntvalue for DQS line 3: if(wb2_we) begin wb2_phy_idelay_dqs_cntvaluein <= wb2_data[4:0]; //save first 5 bits as CNTVALUEIN for the IDELAYE2 for DQS wb2_phy_idelay_dqs_ld <= 1 << (wb2_data[5 +: lanes_clog2]); //save next 5 bits for lane number to be loaded with new delay wb2_update <= wb2_sel[$rtoi($ceil( (lanes_clog2 + 5)/8.0 )) - 1:0]; //only update when sel bit is high (data is valid) end else begin o_wb2_data <= { {(WB2_DATA_BITS-5){1'b0}} , idelay_dqs_cntvaluein[wb2_addr[4 +: lanes_clog2]] }; //use next bits of address as lane number to be read end 4: if(!wb2_we) begin o_wb2_data[0] <= i_phy_idelayctrl_rdy; //1 bit, should be high when IDELAYE2 is ready o_wb2_data[1 +: 5] <= state_calibrate; //5 bits, FSM state of the calibration sequence6 o_wb2_data[1 + 6 +: 5] <= instruction_address; //5 bits, address of the reset sequence o_wb2_data[1 + 6 + 5 +: 4] <= added_read_pipe_max; //4 bit, max added read delay (must have a max value of 1) end 5: if(!wb2_we) begin for(index = 0; index < LANES; index = index + 1) begin o_wb2_data[4*index +: 4] <= added_read_pipe[index]; end //added read pipe delay for lanes 0-to-3 (4 bits each lane the max is just 1 for each) end /* 6: if(!wb2_we) begin o_wb2_data <= dqs_store[31:0]; //show last 4 sets of received 8-bit DQS during MPR (repeated 4 times, must have a value of 10'b01_01_01_01_00 somewhere) end 7: if(!wb2_we) begin o_wb2_data <= wrong_data[31:0]; //lane 1 end 8: if(!wb2_we) begin o_wb2_data <= wrong_data[63:32]; //first 32 bits of the data read after first write using the write_pattern 128'h80dbcfd275f12c3d_9177298cd0ad51c1 end 9: if(!wb2_we) begin o_wb2_data <= wrong_data[95:64]; //first 32 bit of the patern written on the first write just for checking (128'h80dbcfd275f12c3d_9177298cd0ad51c1) end 10: if(!wb2_we) begin //0x28 (data read back) o_wb2_data <= wrong_data[127:96]; //first 32 bit of the patern written on the first write just for checking (128'h80dbcfd275f12c3d_9177298cd0ad51c1) end 11: if(!wb2_we) begin //0x2c (data write) o_wb2_data <= wrong_data[159:128]; //first 32 bit of the patern written on the first write just for checking (128'h80dbcfd275f12c3d_9177298cd0ad51c1) end 12: if(!wb2_we) begin //0x30 o_wb2_data <= wrong_data[191:160]; //check if proper request is received end 13: if(!wb2_we) begin //0x30 o_wb2_data <= wrong_data[223:192];//lane 1 end 14: if(!wb2_we) begin //0x30 o_wb2_data <= wrong_data[255:224]; //lane 1 end*/ 15: if(!wb2_we) begin //0x30 o_wb2_data <= correct_read_data; //lane 1 end 16: if(!wb2_we) begin //0x30 o_wb2_data <= wrong_read_data; //lane 1 end 17: if(wb2_we) begin repeat_test <= wb2_data[0]; reset_from_wb2 <= wb2_data[1]; end 18: if(!wb2_we) begin //0x30 o_wb2_data <= 32'h50; //lane 1 end default: if(!wb2_we) begin //read o_wb2_data <= {(WB2_DATA_BITS/2){2'b10}}; //return alternating 1s and 0s when address to be read is invalid end endcase wb2_write_lane <= wb2_data[5 +: lanes_clog2]; //save next 5 bits for lane number to be loaded with new delay end //end of if(wb2_stb) end//end of else end//end of always end : use_second_wishbone else begin : no_second_wishbone always @* begin o_wb2_stall = 1'b1; // will not accept any request o_wb2_ack = 1'b0; o_wb2_data = 0; end end : no_second_wishbone endgenerate // Logic connected to debug port // wire debug_trigger; assign o_debug1 = {27'd0, state_calibrate[4:0]}; // assign o_debug2 = {debug_trigger,i_phy_iserdes_data[62:32]}; // assign o_debug3 = {debug_trigger,i_phy_iserdes_data[30:0]}; // assign debug_trigger = repeat_test /*o_wb_ack_read_q[0][0]*/; /*********************************************************************************************************************************************/ /******************************************************* Functions *******************************************************/ //convert nanoseconds time input to number of controller clock cycles (referenced to CONTROLLER_CLK_PERIOD) //output is set at same length as a MRS command (19 bits) to maximize the time slot function [DELAY_SLOT_WIDTH - 1:0] ps_to_cycles ( input integer ps ); /* verilator lint_off WIDTHTRUNC */ ps_to_cycles = $rtoi( $ceil( ps*1.0/CONTROLLER_CLK_PERIOD ) ); /* verilator lint_on WIDTHTRUNC */ endfunction //convert nCK input (number of DDR3 clock cycles) to number of controller clock cycles (referenced to serdes_ratio) function [DELAY_SLOT_WIDTH - 1:0] nCK_to_cycles (input integer nCK); /* verilator lint_off WIDTHTRUNC */ nCK_to_cycles = $rtoi( $ceil( nCK*1.0/serdes_ratio ) ); /* verilator lint_on WIDTHTRUNC */ endfunction //convert nanoseconds time input to number of DDR clock cycles (referenced to DDR3_CLK_PERIOD) function integer ps_to_nCK ( input integer ps ); ps_to_nCK = $rtoi( $ceil( ps*1.0/ DDR3_CLK_PERIOD ) ); endfunction //convert DDR clock cycles to nanoseconds (referenced to DDR3_CLK_PERIOD) function integer nCK_to_ps (input integer nCK); nCK_to_ps = $rtoi( $ceil( nCK*1.0*DDR3_CLK_PERIOD ) ); endfunction // functions used to infer some localparam values function integer max(input integer a, input integer b); if(a >= b) max = a; else max = b; endfunction function integer max_int(input integer a, input integer b); if(a >= b) max_int = a; else max_int = b; endfunction //Find the 3-bit value for the Mode Register 0 WR (Write recovery for auto-precharge) function[2:0] WRA_mode_register_value(input integer WRA); //WR_min (write recovery for autoprecharge) in clock cycles is calculated by dividing tWR(in ns) by tCK(in ns) and rounding up to the next integer. //The WR value in the mode register must be programmed to be equal or larger than WRmin. case(WRA+1) 1,2,3,4,5: WRA_mode_register_value = 3'b001; 6: WRA_mode_register_value = 3'b010; 7: WRA_mode_register_value = 3'b011; 8: WRA_mode_register_value = 3'b100; 9,10: WRA_mode_register_value = 3'b101; 11,12: WRA_mode_register_value = 3'b110; 13,14: WRA_mode_register_value = 3'b111; 15,16: WRA_mode_register_value = 3'b000; default: begin WRA_mode_register_value = 3'b000; //defaulting to largest write recovery cycles: 16 cycles end endcase endfunction // Find the correct value for CL based on ddr3 clock period function[3:0] CL_generator(input integer ddr3_clk_period); begin if(ddr3_clk_period <= 3_300 && ddr3_clk_period >= 3_000) begin CL_generator = 4'd5; end else if(ddr3_clk_period <= 3_300 && ddr3_clk_period >= 2_500) begin CL_generator = 4'd6; end else if(ddr3_clk_period <= 2_500 && ddr3_clk_period >= 1_875) begin CL_generator = 4'd7; end else if(ddr3_clk_period <= 1_875 && ddr3_clk_period >= 1_500) begin CL_generator = 4'd9; end else if(ddr3_clk_period <= 1_500 && ddr3_clk_period >= 1_250) begin CL_generator = 4'd11; end end endfunction // Find the correct value for CWL based on ddr3 clock period function[3:0] CWL_generator(input integer ddr3_clk_period); begin if(ddr3_clk_period <= 3_300 && ddr3_clk_period >= 3_000) begin CWL_generator = 4'd5; end else if(ddr3_clk_period <= 3_300 && ddr3_clk_period >= 2_500) begin CWL_generator = 4'd5; end else if(ddr3_clk_period <= 2_500 && ddr3_clk_period >= 1_875) begin CWL_generator = 4'd6; end else if(ddr3_clk_period <= 1_875 && ddr3_clk_period >= 1_500) begin CWL_generator = 4'd7; end else if(ddr3_clk_period <= 1_500 && ddr3_clk_period >= 1_250) begin CWL_generator = 4'd8; end end endfunction function[1:0] get_slot (input[3:0] cmd); //cmd can either be CMD_PRE,CMD_ACT, CMD_WR, CMD_RD integer delay; reg[2:0] slot_number, read_slot, write_slot, anticipate_activate_slot, anticipate_precharge_slot; reg[2:0] remaining_slot; begin slot_number = 0; read_slot = 0; write_slot = 0; anticipate_activate_slot = 0; anticipate_precharge_slot = 0; remaining_slot = 0; delay = 0; // find read command slot number delay = {{(32-4){1'b0}},CL_nCK}; for(slot_number = 0 ; delay != 0 ; delay = delay - 1) begin slot_number[1:0] = slot_number[1:0] - 1'b1; end read_slot[1:0] = slot_number[1:0]; // find write command slot number delay = {{(32-4){1'b0}},CWL_nCK}; for(slot_number = 0 ; delay != 0; delay = delay - 1) begin slot_number[1:0] = slot_number[1:0] - 1'b1; end write_slot[1:0] = slot_number[1:0]; // find anticipate activate command slot number if(CL_nCK > CWL_nCK) slot_number[1:0] = read_slot[1:0]; else slot_number[1:0] = write_slot[1:0]; // delay = ps_to_nCK(tRCD); delay = $rtoi( $ceil( tRCD*1.0/ DDR3_CLK_PERIOD ) ); for(slot_number = slot_number; delay != 0; delay = delay - 1) begin slot_number[1:0] = slot_number[1:0] - 1'b1; end anticipate_activate_slot[1:0] = slot_number[1:0]; // if computed anticipate_activate_slot is same with either write_slot or read_slot, decrement slot number until while(anticipate_activate_slot[1:0] == write_slot[1:0] || anticipate_activate_slot[1:0] == read_slot[1:0]) begin anticipate_activate_slot[1:0] = anticipate_activate_slot[1:0] - 1'b1; end //the remaining slot will be for precharge command anticipate_precharge_slot = 0; while(anticipate_precharge_slot[1:0] == write_slot[1:0] || anticipate_precharge_slot[1:0] == read_slot[1:0] || anticipate_precharge_slot[1:0] == anticipate_activate_slot[1:0]) begin anticipate_precharge_slot[1:0] = anticipate_precharge_slot[1:0] - 1'b1; end //the remaining slot will be for precharge command remaining_slot = 0; while(remaining_slot == write_slot || remaining_slot == read_slot || remaining_slot == anticipate_activate_slot || remaining_slot == anticipate_precharge_slot) begin remaining_slot = remaining_slot + 1'b1; end case(cmd) CMD_RD: get_slot = read_slot[1:0]; CMD_WR: get_slot = write_slot[1:0]; CMD_ACT: get_slot = anticipate_activate_slot[1:0]; CMD_PRE: get_slot = anticipate_precharge_slot[1:0]; 0: get_slot = remaining_slot[1:0]; default: begin `ifdef FORMAL assert(0); //force FORMAL to fail if this is ever reached `endif end endcase end endfunction //find the delay to be used by delay_before_xxxx_counter. // - delay_nCK = delay required between the two commands in DDR3 clock cycles // - start_slot = slot number of the first command // - end_slot = slot number of the second command // returns the number of controller clock cycles to satisfy the delay required between the two commands function [3:0] find_delay(input integer delay_nCK, input reg[1:0] start_slot, input reg[1:0] end_slot); integer k; //error: variable declaration assignments are only allowed at the module level begin k = 0; /* verilator lint_off WIDTH */ while( ((4 - start_slot) + end_slot + 4*k) < delay_nCK) begin /* verilator lint_on WIDTH */ k = k + 1; end find_delay = k[3:0]; end endfunction // find maximum information bit the data width can accomadate // Reference: https://docs.amd.com/v/u/en-US/xapp383 // Relevant equations: N <= 2^(K-1) - K , total_bits = N + K ---> total_bits <= 2^(total_bits - N - 1) // N = information bits , K = parity bits , total_bits = total data width (information bit plus parity bits) function integer max_information_bits; input integer total_bits; integer N; begin N = total_bits; while (total_bits > 2**(total_bits-N-1)) N = N - 1; max_information_bits = N; end endfunction // combine information bits (wb_data) to parity bits function [71:0] undecoded_data(input[63:0] wb_data, input[7:0] parity_bits); begin // decoded_parity is 8 bits: {msb, 2^6, 2^5, 2^4, 2^3, 2^2, 2^1, 2^0}; {undecoded_data[71], undecoded_data[64-1], undecoded_data[32-1], undecoded_data[16-1], undecoded_data[8-1], undecoded_data[4-1], undecoded_data[2-1], undecoded_data[1-1]} = parity_bits; {undecoded_data[70:64], undecoded_data[62:32], undecoded_data[30:16], undecoded_data[14:8], undecoded_data[6:4], undecoded_data[2]} = wb_data; end endfunction /*********************************************************************************************************************************************/ /******************************************************* Module Instantiations *******************************************************/ generate if(ECC_ENABLE == 0) begin : no_ecc assign stage1_data_encoded = stage1_data; //assign stage1_data_mux = stage1_data_encoded; if(ECC_TEST) begin : ecc_test assign stage1_data_mux = initial_calibration_done ? {stage1_data_encoded[wb_data_bits-1:1] , 1'b0} : stage1_data_encoded; end else begin : no_ecc_test assign stage1_data_mux = stage1_data_encoded; end assign encoded_parity = 0; assign sb_err_o = 1'b0; assign db_err_o = 1'b0; assign o_wb_data_q_decoded = 0; end else if (ECC_ENABLE == 2) begin : sideband_ECC_per_8_bursts /* verilator lint_off PINCONNECTEMPTY */ ecc_enc #( .K(ECC_INFORMATION_BITS), //Information bit vector size .P0_LSB(0) //0: p0 is located at MSB //1: p0 is located at LSB ) ecc_enc_inst ( .d_i(stage1_data[ECC_INFORMATION_BITS-1:0]), //information bit vector input .q_o(stage1_data_encoded), //encoded data word output .p_o(), //parity vector output .p0_o() //extended parity bit ); // if initial calibration is not yet done, then data will not be encoded with ECC if(ECC_TEST) begin : ecc_test assign stage1_data_mux = initial_calibration_done? {stage1_data_encoded[wb_data_bits-1:1], 1'b0} : stage1_data; end else begin : non_ecc_test assign stage1_data_mux = initial_calibration_done? stage1_data_encoded : stage1_data; end ecc_dec #( .K(ECC_INFORMATION_BITS), //Information bit vector size .LATENCY(0), //0: no latency (combinatorial design) //1: registered outputs //2: registered inputs+outputs .P0_LSB(0) //0: p0 is located at MSB //1: p0 is located at LSB ) ecc_dec_inst ( //clock/reset ports (if LATENCY > 0) .rst_ni(1'b1), //asynchronous reset .clk_i(1'b0), //clock input .clkena_i(1'b0), //clock enable input //data ports .d_i(o_wb_data_q_current), //encoded code word input .q_o(o_wb_data_q_decoded[ECC_INFORMATION_BITS-1:0]), //information bit vector output .syndrome_o(), //syndrome vector output //flags .sb_err_o(sb_err_o), //single bit error detected .db_err_o(db_err_o), //double bit error detected .sb_fix_o() //repaired error in the information bits ); assign o_wb_data_q_decoded[wb_data_bits - 1 : ECC_INFORMATION_BITS] = 0; assign encoded_parity = 0; end // ECC per burst. If x16 DDR3, then every 16 bits will have ECC parity bits. else if(ECC_ENABLE == 1) begin : sideband_ECC_per_burst wire[7:0] sb_err; wire[7:0] db_err; genvar index_enc; // 8 encoders to add ECC bits per burst for(index_enc = 0; index_enc < 8 ; index_enc = index_enc + 1) begin ecc_enc #( .K(ECC_INFORMATION_BITS), //Information bit vector size .P0_LSB(0) //0: p0 is located at MSB //1: p0 is located at LSB ) ecc_enc_inst ( .d_i(stage1_data[ECC_INFORMATION_BITS*index_enc +: ECC_INFORMATION_BITS]), //information bit vector input .q_o(stage1_data_encoded[DQ_BITS*LANES*index_enc +: DQ_BITS*LANES]), //encoded data word output .p_o(), //parity vector output .p0_o() //extended parity bit ); ecc_dec #( .K(ECC_INFORMATION_BITS), //Information bit vector size .LATENCY(0), //0: no latency (combinatorial design) //1: registered outputs //2: registered inputs+outputs .P0_LSB(0) //0: p0 is located at MSB //1: p0 is located at LSB ) ecc_dec_inst ( //clock/reset ports (if LATENCY > 0) .rst_ni(1'b1), //asynchronous reset .clk_i(1'b0), //clock input .clkena_i(1'b0), //clock enable input //data ports .d_i(o_wb_data_q_current[DQ_BITS*LANES*index_enc +: DQ_BITS*LANES]), //encoded code word input .q_o(o_wb_data_q_decoded[ECC_INFORMATION_BITS*index_enc +: ECC_INFORMATION_BITS]), //information bit vector output .syndrome_o(), //syndrome vector output //flags .sb_err_o(sb_err[index_enc]), //single bit error detected .db_err_o(db_err[index_enc]), //double bit error detected .sb_fix_o() //repaired error in the information bits ); /* verilator lint_on PINCONNECTEMPTY */ end assign o_wb_data_q_decoded[wb_data_bits - 1 : ECC_INFORMATION_BITS*8] = 0; if(ECC_TEST) begin : ecc_test assign stage1_data_mux = initial_calibration_done? {stage1_data_encoded[wb_data_bits-1:1], 1'b0} : stage1_data; end else begin : non_ecc_test assign stage1_data_mux = initial_calibration_done? stage1_data_encoded : stage1_data; end assign sb_err_o = |sb_err; assign db_err_o = |db_err; assign encoded_parity = 0; end else if (ECC_ENABLE == 3) begin : inline_ECC wire[wb_data_bits/64 - 1 : 0] sb_err; wire[wb_data_bits/64 - 1 :0] db_err; wire[72*(wb_data_bits/64) - 1 : 0] coded_word; genvar index_enc; // 8 encoders to add ECC bits per burst for(index_enc = 0; index_enc < wb_data_bits/64 ; index_enc = index_enc + 1) begin // encode/decode each 64-bit blocks /* verilator lint_off PINCONNECTEMPTY */ ecc_enc #( .K(64), //Information bit vector size .P0_LSB(0) //0: p0 is located at MSB //1: p0 is located at LSB ) ecc_enc_inst ( .d_i(stage1_data[64*index_enc +: 64]), //information bit vector input .q_o(), //encoded data word output .p_o(encoded_parity[8*index_enc +: 7]), //parity vector output .p0_o(encoded_parity[8*index_enc + 7]) //extended parity bit ); // combine information bits and parity bits (fixed to width of 72 since information bits is always 64) assign coded_word[72*index_enc +: 72] = undecoded_data(o_wb_data_q_current[64*index_enc +: 64], decoded_parity[8*index_enc +: 8]); ecc_dec #( .K(64), //Information bit vector size .LATENCY(0), //0: no latency (combinatorial design) //1: registered outputs //2: registered inputs+outputs .P0_LSB(0) //0: p0 is located at MSB //1: p0 is located at LSB ) ecc_dec_inst ( //clock/reset ports (if LATENCY > 0) .rst_ni(1'b1), //asynchronous reset .clk_i(1'b0), //clock input .clkena_i(1'b0), //clock enable input //data ports .d_i(coded_word[72*index_enc +: 72]), //encoded code word input .q_o(o_wb_data_q_decoded[64*index_enc +: 64]), //information bit vector output .syndrome_o(), //syndrome vector output //flags .sb_err_o(sb_err[index_enc]), //single bit error detected .db_err_o(db_err[index_enc]), //double bit error detected .sb_fix_o() //repaired error in the information bits ); /* verilator lint_on PINCONNECTEMPTY */ end assign stage1_data_encoded = stage1_data; // ecc_req_stage2 means stage2 is doing ECC write operation if(ECC_TEST) begin : ecc_test assign stage1_data_mux = ecc_stage1_stall? stage2_ecc_write_data_d : initial_calibration_done ? {stage1_data_encoded[wb_data_bits-1:1] , 1'b0} : stage1_data_encoded; end else begin : non_ecc_test assign stage1_data_mux = ecc_stage1_stall? stage2_ecc_write_data_d : stage1_data_encoded; end // error flags are only relevant for non-ECC reads (o_aux[AUX_WIDTH-2 +: 1] = 2'b01) and ack is high assign sb_err_o = (|sb_err) && (o_aux[AUX_WIDTH-2 +: 2] == 2'b01) && o_wb_ack_read_q[0][0]; assign db_err_o = (|db_err) && (o_aux[AUX_WIDTH-2 +: 2] == 2'b01) && o_wb_ack_read_q[0][0]; end endgenerate /*********************************************************************************************************************************************/ `ifndef YOSYS ///YOSYS: System task `$display' called with invalid/unsupported format specifier initial begin $display("\nCONTROLLER PARAMETERS:\n-----------------------------"); $display("CONTROLLER_CLK_PERIOD = %0d", CONTROLLER_CLK_PERIOD); $display("DDR3_CLK_PERIOD = %0d", DDR3_CLK_PERIOD); $display("ROW_BITS = %0d", ROW_BITS); $display("COL_BITS = %0d", COL_BITS); $display("BA_BITS = %0d", BA_BITS); $display("BYTE_LANES = %0d", LANES); $display("AUX_WIDTH = %0d", AUX_WIDTH); $display("MICRON_SIM = %0d", MICRON_SIM); $display("ODELAY_SUPPORTED = %0d", ODELAY_SUPPORTED); $display("SECOND_WISHBONE = %0d", SECOND_WISHBONE); $display("WB2_ADDR_BITS = %0d", WB2_ADDR_BITS); $display("WB2_DATA_BITS = %0d", WB2_DATA_BITS); $display("ECC_ENABLE = %0d", ECC_ENABLE); $display("ECC_INFORMATION_BITS = %0d", ECC_INFORMATION_BITS); $display("WB_ERROR = %0d", WB_ERROR); $display("\nCONTROLLER LOCALPARAMS:\n-----------------------------"); $display("wb_addr_bits = %0d", wb_addr_bits); $display("wb_data_bits = %0d", wb_data_bits); $display("wb_sel_bits = %0d", wb_sel_bits); $display("wb2_sel_bits = %0d", wb2_sel_bits); $display("DQ_BITS = %0d", DQ_BITS); $display("row_bank_col = %0d", row_bank_col); $display("\nCOMMAND SLOTS:\n-----------------------------"); $display("READ_SLOT = %0d", READ_SLOT); $display("WRITE_SLOT = %0d", WRITE_SLOT); $display("ACTIVATE_SLOT = %0d", ACTIVATE_SLOT); $display("PRECHARGE_SLOT = %0d", PRECHARGE_SLOT); $display("REMAINING_SLOT = %0d", REMAINING_SLOT); $display("\nDELAYS:\n-----------------------------"); $display("CL = %0d", CL_nCK); $display("CWL = %0d", CWL_nCK); $display("PRECHARGE_TO_ACTIVATE_DELAY = %0d", PRECHARGE_TO_ACTIVATE_DELAY); $display("ACTIVATE_TO_WRITE_DELAY = %0d", ACTIVATE_TO_WRITE_DELAY); $display("ACTIVATE_TO_READ_DELAY = %0d", ACTIVATE_TO_READ_DELAY); $display("ACTIVATE_TO_PRECHARGE_DELAY = %0d", ACTIVATE_TO_PRECHARGE_DELAY); $display("ACTIVATE_TO_ACTIVATE_DELAY = %0d", ACTIVATE_TO_ACTIVATE_DELAY); $display("READ_TO_WRITE_DELAY = %0d", READ_TO_WRITE_DELAY); $display("READ_TO_READ_DELAY = %0d", READ_TO_READ_DELAY); $display("READ_TO_PRECHARGE_DELAY = %0d", READ_TO_PRECHARGE_DELAY); $display("WRITE_TO_WRITE_DELAY = %0d", WRITE_TO_WRITE_DELAY); $display("WRITE_TO_READ_DELAY = %0d", WRITE_TO_READ_DELAY); $display("WRITE_TO_PRECHARGE_DELAY = %0d", WRITE_TO_PRECHARGE_DELAY); $display("STAGE2_DATA_DEPTH = %0d", STAGE2_DATA_DEPTH); $display("READ_ACK_PIPE_WIDTH = %0d\n", READ_ACK_PIPE_WIDTH); $display("\nDDR3 TOP PARAMETERS:\n-----------------------------"); $display("CONTROLLER_CLK_PERIOD = %0d", CONTROLLER_CLK_PERIOD); $display("DDR3_CLK_PERIOD = %0d", DDR3_CLK_PERIOD); $display("ROW_BITS = %0d", ROW_BITS); $display("COL_BITS = %0d", COL_BITS); $display("BA_BITS = %0d", BA_BITS); $display("BYTE_LANES = %0d", LANES); $display("AUX_WIDTH = %0d", AUX_WIDTH); $display("WB2_ADDR_BITS = %0d", WB2_ADDR_BITS); $display("WB2_DATA_BITS = %0d", WB2_DATA_BITS); $display("MICRON_SIM = %0d", MICRON_SIM); $display("ODELAY_SUPPORTED = %0d", ODELAY_SUPPORTED); $display("SECOND_WISHBONE = %0d", SECOND_WISHBONE); $display("WB_ERROR = %0d", WB_ERROR); $display("BIST_MODE = %0d", BIST_MODE); $display("ECC_ENABLE = %0d", ECC_ENABLE); $display("DIC = %0d", DIC); $display("RTT_NOM = %0d", RTT_NOM); $display("DUAL_RANK_DIMM = %0d", DUAL_RANK_DIMM); $display("End of DDR3 TOP PARAMETERS\n-----------------------------"); end `endif `ifdef FORMAL `define TEST_CONTROLLER_PIPELINE `ifdef FORMAL_COVER initial assume(!i_rst_n); reg[24:0] f_wb_inputs[31:0]; reg[9:0] f_reset_counter = 0; reg[4:0] f_index = 0; reg f_past_valid = 0; initial begin /* // Sequential read to row 0 then jump to row 2 f_wb_inputs[0] = {1'b0, {14'd0,3'd1, 7'd0}}; //read f_wb_inputs[1] = {1'b0, {14'd0,3'd1, 7'd1}}; //read on same bank (tCCD) f_wb_inputs[2] = {1'b0, {14'd0,3'd1, 7'd2}}; //write on same bank (tRTW) f_wb_inputs[3] = {1'b0, {14'd0,3'd1, 7'd3}}; //write on same bank (tCCD) f_wb_inputs[4] = {1'b0, {14'd0,3'd1, 7'd4}}; //read on different bank f_wb_inputs[5] = {1'b0, {14'd0,3'd1, 7'd5}}; //write on same bank (tRTW) f_wb_inputs[6] = {1'b0, {14'd2,3'd1, 7'd6}}; //write on different bank (already activated) f_wb_inputs[7] = {1'b0, {14'd2,3'd1, 7'd7}}; //write (tCCD) f_wb_inputs[8] = {1'b0, {14'd2,3'd1, 7'd8}}; //write on different bank (already activated but wrong row) f_wb_inputs[9] = {1'b0, {14'd2,3'd1, 7'd9}}; //write (tCCD) f_wb_inputs[10] = {1'b0, {14'd3,3'd1, 7'd10}}; //write (tCCD) f_wb_inputs[11] = {1'b0, {14'd3,3'd1, 7'd11}}; //read (same bank but wrong row so precharge first) f_wb_inputs[12] = {1'b0, {14'd3,3'd1, 7'd12}}; //read (tCCD) f_wb_inputs[13] = {1'b0, {14'd3,3'd1, 7'd13}}; //read (tCCD) */ f_wb_inputs[0] = {1'b0, {14'd0,3'd1, 7'd0}}; //read f_wb_inputs[1] = {1'b0, {14'd0,3'd1, 7'd1}}; //read on same bank (tCCD) f_wb_inputs[2] = {1'b1, {14'd0,3'd1, 7'd2}}; //write on same bank (tRTW) f_wb_inputs[3] = {1'b1, {14'd0,3'd1, 7'd3}}; //write on same bank (tCCD) f_wb_inputs[4] = {1'b0, {14'd0,3'd2, 7'd0}}; //read on different bank f_wb_inputs[5] = {1'b1, {14'd0,3'd2, 7'd1}}; //write on same bank (tRTW) f_wb_inputs[6] = {1'b1, {14'd0,3'd1, 7'd4}}; //write on different bank (already activated) f_wb_inputs[7] = {1'b1, {14'd0,3'd1, 7'd5}}; //write (tCCD) f_wb_inputs[8] = {1'b1, {14'd1,3'd2, 7'd0}}; //write on different bank (already activated but wrong row) f_wb_inputs[9] = {1'b1, {14'd1,3'd2, 7'd1}}; //write (tCCD) f_wb_inputs[10] = {1'b1, {14'd1,3'd2, 7'd2}}; //write (tCCD) f_wb_inputs[11] = {1'b0, {14'd2,3'd2, 7'd0}}; //read (same bank but wrong row so precharge first) f_wb_inputs[12] = {1'b0, {14'd2,3'd2, 7'd1}}; //read (tCCD) f_wb_inputs[13] = {1'b0, {14'd2,3'd2, 7'd2}}; //read (tCCD) /* f_wb_inputs[0] = {1'b0, {14'd0,3'd1, 7'd0}}; //read f_wb_inputs[1] = {1'b0, {14'd0,3'd1, 7'd1}}; //read on same bank (tCCD) f_wb_inputs[2] = {1'b1, {14'd0,3'd2, 7'd0}}; //write on the anticipated bank f_wb_inputs[3] = {1'b1, {14'd0,3'd2, 7'd1}}; //write on same bank (tCCD) f_wb_inputs[4] = {1'b0, {14'd0,3'd3, 7'd0}}; //read on the anticipated bank f_wb_inputs[5] = {1'b0, {14'd0,3'd3, 7'd1}}; //read on same bank (tCCD) f_wb_inputs[6] = {1'b1, {14'd0,3'd7, 7'd0}}; //write on the un-anticipated idle bank (activate first) f_wb_inputs[7] = {1'b1, {14'd0,3'd1, 7'd1}}; //write on the un-anticipated active bank and row (write) f_wb_inputs[8] = {1'b1, {14'd1,3'd7, 7'd0}}; //write on the un-anticipated active bank but wrong row (precharge first) */ /* f_wb_inputs[0] = {1'b0, {14'd0,3'd1, 7'd0}}; //read f_wb_inputs[1] = {1'b0, {14'd0,3'd1, 7'd1}}; //read f_wb_inputs[2] = {1'b0, {14'd0,3'd1, 7'd2}}; //read f_wb_inputs[3] = {1'b0, {14'd0,3'd1, 7'd3}}; //read f_wb_inputs[4] = {1'b0, {14'd0,3'd1, 7'd4}}; //read f_wb_inputs[5] = {1'b0, {14'd0,3'd1, 7'd5}}; //read f_wb_inputs[6] = {1'b0, {14'd0,3'd1, 7'd6}}; //write f_wb_inputs[7] = {1'b0, {14'd0,3'd1, 7'd7}}; //write f_wb_inputs[8] = {1'b0, {14'd0,3'd1, 7'd8}}; //write f_wb_inputs[9] = {1'b0, {14'd0,3'd1, 7'd9}}; //write f_wb_inputs[10] = {1'b0, {14'd0,3'd1, 7'd10}}; //write f_wb_inputs[11] = {1'b0, {14'd0,3'd1, 7'd11}}; //write */ /* f_wb_inputs[0] = {1'b0, {14'd1,3'd1, 7'd120}}; //write on same bank (tRTW) f_wb_inputs[1] = {1'b0, {14'd1,3'd1, 7'd121}}; //write on different bank (already activated) f_wb_inputs[2] = {1'b0, {14'd1,3'd1, 7'd122}}; //write (tCCD) f_wb_inputs[3] = {1'b0, {14'd1,3'd1, 7'd123}}; //write on different bank (already activated but wrong row) f_wb_inputs[4] = {1'b0, {14'd1,3'd1, 7'd124}}; //write (tCCD) f_wb_inputs[5] = {1'b0, {14'd1,3'd1, 7'd125}}; //write (tCCD) f_wb_inputs[6] = {1'b0, {14'd1,3'd1, 7'd126}}; //read (same bank but wrong row so precharge first) f_wb_inputs[7] = {1'b0, {14'd1,3'd1, 7'd127}}; //read (tCCD) f_wb_inputs[8] = {1'b0, {14'd1,3'd2, 7'd0}}; //read (tCCD) f_wb_inputs[9] = {1'b0, {14'd1,3'd2, 7'd1}}; //read (tCCD) f_wb_inputs[10] = {1'b0, {14'd1,3'd2, 7'd2}}; //read (tCCD) */ end initial begin f_reset_counter = 0; end always @(posedge i_controller_clk) begin if(!o_wb_stall) begin f_index <= f_index + 1; //number of requests accepted end f_reset_counter <= f_reset_counter + 1; end always @(posedge i_controller_clk) begin assume(i_wb_cyc == 1); assume(i_wb_stb == 1); if(f_past_valid) begin assume(i_rst_n); end assume(i_wb_we == f_wb_inputs[f_index][24]); assume(i_wb_addr == f_wb_inputs[f_index][23:0]); cover(f_index == 10); if(f_index != 0) begin assume(i_rst_n); //dont reset just to skip a request forcefully end end `endif //endif for FORMAL_COVER `ifdef TEST_CONTROLLER_PIPELINE // wires and registers used in this formal section `ifdef TEST_DATA localparam F_TEST_CMD_DATA_WIDTH = $bits(i_wb_data) + $bits(i_wb_sel) + $bits(i_aux) + $bits(i_wb_addr) + $bits(i_wb_we); `else localparam F_TEST_CMD_DATA_WIDTH = $bits(i_wb_addr) + $bits(i_wb_we); `endif localparam F_MAX_STALL = max(WRITE_TO_PRECHARGE_DELAY,READ_TO_PRECHARGE_DELAY) + 1 + PRECHARGE_TO_ACTIVATE_DELAY + 1 + max(ACTIVATE_TO_WRITE_DELAY,ACTIVATE_TO_READ_DELAY) + 1 ; //worst case delay (Precharge -> Activate-> R/W) //add 1 to each delay since they end at zero localparam F_MAX_ACK_DELAY = F_MAX_STALL + (READ_ACK_PIPE_WIDTH + 2) + (ECC_ENABLE == 1 || ECC_ENABLE == 2); //max_stall + size of shift_reg_read_pipe_q + o_wb_ack_read_q (assume to be two via read_pipe_max) // plus 1 since ECC adds 1 clock latency before ACK (*keep*) wire[3:0] f_max_stall, f_max_ack_delay; assign f_max_stall = F_MAX_STALL; assign f_max_ack_delay = F_MAX_ACK_DELAY; reg f_past_valid = 0; reg[$bits(instruction_address) - 1: 0] f_addr = 0, f_read = 0 ; reg[$bits(instruction) - 1:0] f_read_inst = INITIAL_RESET_INSTRUCTION; reg[3:0] f_count_refreshes = 0; //count how many refresh cycles had already passed reg[24:0] f_wb_inputs[31:0]; reg[4:0] f_index = 0; reg[5:0] f_counter = 0; reg[4:0] f_index_1; reg[F_TEST_CMD_DATA_WIDTH - 1:0] f_write_data; reg f_write_fifo = 0, f_read_fifo = 0; reg[ROW_BITS-1:0] f_bank_active_row[(1<<(BA_BITS+DUAL_RANK_DIMM))-1:0]; reg[(1<<(BA_BITS+DUAL_RANK_DIMM))-1:0] f_bank_status = 0; (*keep*) reg[(1<<(BA_BITS+DUAL_RANK_DIMM))-1:0] f_bank_status_2 = 0; wire f_empty, f_full; wire[F_TEST_CMD_DATA_WIDTH - 1:0] f_read_data; wire[F_TEST_CMD_DATA_WIDTH - 1:0] f_read_data_next; wire[$bits(instruction) - 1:0] a= read_rom_instruction(f_const_addr); //retrieve an instruction based on engine's choice wire[1:0] f_write_slot; wire[1:0] f_read_slot; wire[1:0] f_precharge_slot; wire[1:0] f_activate_slot; (*anyconst*) reg[$bits(instruction_address) - 1: 0] f_const_addr; initial assume(!i_rst_n); reg past_sync_rst_controller = 1; always @(posedge i_controller_clk) begin past_sync_rst_controller <= sync_rst_controller; end always @* begin //assert(tMOD + tZQinit > nCK_to_cycles(tDLLK)); //Initialization sequence requires that tDLLK is satisfied after MRS to mode register 0 and ZQ calibration assert(MR0[18] != 1'b1); //last Mode Register bit should never be zero assert(MR1_WL_EN[18] != 1'b1); //(as this is used for A10-AP control for non-MRS assert(MR1_WL_DIS[18] != 1'b1); //(as this is used for A10-AP control for non-MRS assert(MR2[18] != 1'b1); //commands in the reset sequence) assert(MR3_MPR_EN[18] != 1'b1); assert(MR3_MPR_DIS[18] != 1'b1); assert(DELAY_COUNTER_WIDTH <= $bits(MR0)); //bitwidth of mode register should be enough for the delay counter //sanity checking to ensure 5 bits is allotted for extra instruction {reset_finished, use_timer , stay_command , cke , reset_n } assert(($bits(instruction) - $bits(CMD_MRS) - $bits(MR0)) == 5 ); assert(DELAY_SLOT_WIDTH >= DELAY_COUNTER_WIDTH); //width occupied by delay timer slot on the reset rom must be able to occupy the maximum possible delay value on the reset sequence end always @(posedge i_controller_clk) f_past_valid <= 1; //The idea below is sourced from https://zipcpu.com/formal/2019/11/18/genuctrlr.html //We will form a packet of information describing each instruction as it goes through the pipeline and make assertions along the way. //2-stage Pipeline: f_addr (update address) -> f_read (read instruction from rom) //pipeline stage logic: f_addr (update address) -> f_read (read instruction from rom) always @(posedge i_controller_clk) begin if(sync_rst_controller) begin f_addr <= 0; f_read <= 0; end //move the pipeline forward when counter is about to go zero and we are not yet at end of reset sequence else if((((delay_counter == 1) && !pause_counter) || !instruction[USE_TIMER])) begin if(f_addr == 22 && user_self_refresh_q) begin // if self refresh, move forward f_addr <= 23; end else if(f_addr == 22 & !user_self_refresh_q) begin // if not self refresh, move backward f_addr <= 19; end else if (f_addr == 26) begin // 26 (self-refresh exit) always wraps back to 20 (refresh) f_addr <= 20; end else begin // else, just increment f_addr <= f_addr + 1; end f_read <= f_addr; end else if(f_addr == 22 && user_self_refresh_q) begin // if self refresh, move forward immediately (no need to wait for delay zero) f_addr <= 23; f_read <= f_addr; end end // assert f_addr and f_read as shadows of next and current instruction address always @* begin assert(f_addr == instruction_address); //f_addr is the shadow of instruction_address (thus f_addr is the address of NEXT instruction) f_read_inst = read_rom_instruction(f_read); //f_read is the address of CURRENT instruction assert(f_read_inst == read_rom_instruction(f_read)); // needed for induction to make sure the engine will not create his own instruction if(f_addr == 0) begin f_read_inst = INITIAL_RESET_INSTRUCTION; //will only happen at the very start: f_addr (0) -> f_read (0) where we are reading the initial reset instruction and not the rom end assert(f_read_inst == instruction); // f_read_inst is the shadow of current instruction end // main assertions for the reset sequence always @(posedge i_controller_clk) begin if(past_sync_rst_controller) begin assert(f_addr == 0); assert(f_read == 0); assert(instruction_address == 0); assert(delay_counter == (INITIAL_RESET_INSTRUCTION[DELAY_COUNTER_WIDTH - 1:0])); assert(delay_counter_is_zero == (INITIAL_RESET_INSTRUCTION[DELAY_COUNTER_WIDTH - 1:0] == 0)); end else if(f_past_valid) begin //if counter is zero previously and current instruction needs timer delay, then this cycle should now have the new updated counter value if( $past(delay_counter_is_zero) && $past(f_read_inst[USE_TIMER]) && !$past(user_self_refresh_q) ) begin assert(delay_counter == f_read_inst[DELAY_COUNTER_WIDTH - 1:0]); end //delay_counter_is_zero can be high when counter is zero and current instruction needs delay if($past(f_read_inst[USE_TIMER]) && !$past(pause_counter) && !$past(user_self_refresh_q)) begin assert( delay_counter_is_zero == (delay_counter == 0) ); end //delay_counter_is_zero will go high this cycle when we received a don't-use-timer instruction else if(!$past(f_read_inst[USE_TIMER]) && !$past(pause_counter)) begin assert(delay_counter_is_zero); end //we are on the middle of a delay thus all values must remain constant while only delay_counter changes (decrement) if(!delay_counter_is_zero) begin assert(f_addr == $past(f_addr)); assert(f_read == $past(f_read)); assert(f_read_inst == $past(f_read_inst)); end //if delay is not yet zero and timer delay is enabled, then delay_counter should decrement if(!$past(delay_counter_is_zero) && $past(f_read_inst[USE_TIMER]) && !$past(pause_counter) ) begin assert((delay_counter == $past(delay_counter) - 1) || (delay_counter == 0 && $past(user_self_refresh_q))); assert(delay_counter < $past(delay_counter) ); //just to make sure delay_counter will never overflow back to all 1's end //sanity checking for the comment "delay_counter will be zero AT NEXT CLOCK CYCLE when counter is now one" if($past(delay_counter) == 1 && !$past(pause_counter)) begin assert(delay_counter == 0 && delay_counter_is_zero); end //assert the relationship between the stages FOR RESET SEQUENCE if(!reset_done) begin if(f_addr == 0) begin assert(f_read == 0); //will only happen at the very start: f_addr (0) -> f_read (0) end else if(f_read == 0) begin assert(f_addr <= 1); //will only happen at the very first two cycles: f_addr (1) -> f_read (0) or f_addr (0) -> f_read (0) end //else if($past(reset_done)) assert(f_read == $past(f_read)); //reset instruction does not repeat after reaching end address thus it must saturate when pipeline reaches end else begin assert(f_read + 1 == f_addr); //address increments continuously end assert($past(f_read) < 21); //only instruction address 0-to-13 is for reset sequence (reset_done is asserted at address 14) end //assert the relationship between the stages FOR REFRESH SEQUENCE else begin if(f_read == 22) begin assert( (f_addr == 19) || (f_addr == 23 ) ); //if current instruction is 22, then next instruction must be at 19 or 23 (instruction address wraps from 22 to 19 if not self refresh, else 22 to 23) end else if(f_addr == 19 || f_addr == 23) begin assert(f_read == 22); //if next instruction is at 19 or 23, then current instruction must be at 22 (instruction address wraps from 22 to 19) end else if(f_read == 26) begin assert(f_addr == 20); // if current instruction is 26 (exit self-refresh) then go to 20 (refresh) end else begin assert(f_read + 1 == f_addr); //if there is no need to wrap around, then instruction address must increment end assert((f_read >= 19 && f_read <= 26) ); //refresh sequence is only on instruction address 19,20,21,22 end // reset_done must retain high when it was already asserted once if($past(reset_done)) begin assert(reset_done); end // reset is already done at address 21 and up if($past(f_read) >= 21 ) begin assert(reset_done); end //if reset is done, the REF_IDLE must only be high at instruction address 14 (on the middle of tREFI) if(reset_done && f_read_inst[REF_IDLE]) begin assert(f_read == 21); end end end // assertions on the instructions stored on the rom always @* begin //there MUST BE no instruction which USE_TIMER is high but delay is zero since it can cause the logic to lock-up (delay must be at least 1) if(a[USE_TIMER]) begin assert( a[DELAY_COUNTER_WIDTH - 1:0] > 0); end end // assertion on FSM calibration always @* begin if(pause_counter) begin assert(instruction_address != 22); //pause_counter can only go high at instruction address 26 end if(instruction_address == 19 || instruction_address == 23) begin //pre-stall delay before precharge all to finish all remaining requests if(pause_counter == 1) begin // if there are still pending requests (pause_counter high) then delay_counter should still be at PRE_REFRESH_DELAY assert(delay_counter == PRE_REFRESH_DELAY); end end if(instruction_address >= 24 && instruction_address < 26) begin assert(!pause_counter); // no pause counter from precharge to sel-refresh entry end if(instruction_address < 13) begin assert(state_calibrate == IDLE); end if(state_calibrate > IDLE && state_calibrate <= BITSLIP_DQS_TRAIN_2) begin assert(instruction_address == 13); assert(pause_counter); end if(state_calibrate > START_WRITE_LEVEL && state_calibrate <= WAIT_FOR_FEEDBACK) begin assert(instruction_address == 17); assert(pause_counter); end if(pause_counter) begin assume(delay_counter != 0); // will fix this soon end if(state_calibrate > ISSUE_WRITE_1 && state_calibrate <= ANALYZE_DATA) begin assume(instruction_address == 22); //write-then-read calibration will not take more than tREFI (7.8us, delay a address 22) assert(reset_done); end if(state_calibrate > ISSUE_WRITE_1 && state_calibrate <= DONE_CALIBRATE) begin assert(reset_done); end if(state_calibrate == DONE_CALIBRATE) begin assert(reset_done); assert(instruction_address >= 19); end if(reset_done) begin assert(instruction_address >= 19); end assume(repeat_test == 0); // final_calibration_done is equal to state_calibrate == DONE assert(final_calibration_done == (state_calibrate == DONE_CALIBRATE)); end always @* begin //make sure each command has distinct slot number (except for read/write which can have the same or different slot number) //assert((WRITE_SLOT != ACTIVATE_SLOT != PRECHARGE_SLOT) && (READ_SLOT != ACTIVATE_SLOT != PRECHARGE_SLOT) ); assert(WRITE_SLOT != ACTIVATE_SLOT); assert(WRITE_SLOT != PRECHARGE_SLOT); assert(READ_SLOT != ACTIVATE_SLOT); assert(READ_SLOT != PRECHARGE_SLOT); //make sure slot number for read command is correct end //create a formal assertion that says during refresh ack should be low always //make an assertion that there will be no request pending before actual refresh starts at instruction 4'd12 mini_fifo #( .FIFO_WIDTH(1), //the fifo will have 2**FIFO_WIDTH positions .DATA_WIDTH(F_TEST_CMD_DATA_WIDTH) //each FIFO position can store DATA_WIDTH bits ) fifo_1 ( .i_clk(i_controller_clk), .i_rst_n(!past_sync_rst_controller && i_wb_cyc), //reset outstanding request at reset or when cyc goes low .read_fifo(f_read_fifo), .write_fifo(f_write_fifo), .empty(f_empty), .full(f_full), .write_data(f_write_data), .read_data(f_read_data), .read_data_next(f_read_data_next) ); always @* begin if(state_calibrate == DONE_CALIBRATE && i_wb_cyc) begin if(ECC_ENABLE != 3) begin if(f_full) begin assert(stage1_pending && stage2_pending);//there are 2 contents end if(stage1_pending && stage2_pending) begin assert(f_full); end if(!f_empty && !f_full) begin assert(stage1_pending ^ stage2_pending);//there is 1 content end if(stage1_pending ^ stage2_pending) begin assert(!f_empty && !f_full); end if(f_empty) begin assert(stage1_pending == 0 && stage2_pending==0); //there is 0 content end if(stage1_pending == 0 && stage2_pending == 0) begin assert(f_empty); end end else begin if(f_full) begin // if f_full then data can either be in: // stage1 and stage2 IF ecc_req_stage2 is low // stage0 and stage1 IF ecc_req_stage2 is high assert((stage1_pending && stage2_pending && !ecc_req_stage2) || (stage0_pending && stage1_pending && ecc_req_stage2)); end if(stage1_pending && stage2_pending) begin // if stage1 and stage2 is pending,and stage2 is non-ECC : fifo is full if(!ecc_req_stage2) begin assert(f_full); end // if stage2 is ECC-req while stage0 is pending then fifo is still full if(ecc_req_stage2 && stage0_pending) begin assert(f_full); end end // stage0 and stage1 pending means fifo is full and stage2 is ECC request if(stage0_pending && stage1_pending) begin assert(f_full); assert(ecc_req_stage2); end if(!f_empty && !f_full) begin // if there is only 1 content assert((stage1_pending ^ stage2_pending) || (stage1_pending && stage2_pending && ecc_req_stage2)); // if only 1 req, then either stage1 or stage2 is pending, UNLESS stage2 is ECC end if(stage1_pending ^ stage2_pending) begin // if either only stage1 or 2 is pending, then there is only 1 request assert(!f_empty && !f_full); end if(f_empty) begin assert(stage1_pending == 0 && stage2_pending == 0 && stage0_pending == 0); //there is 0 content end if(stage1_pending == 0 && stage2_pending == 0) begin assert(f_empty); assert(!stage0_pending); end end end if(state_calibrate < ISSUE_WRITE_1) begin assert(!stage1_pending && !stage2_pending); end if(stage1_pending && (state_calibrate == ISSUE_READ)) begin assert(stage1_we); end if(stage2_pending && (state_calibrate == ISSUE_READ)) begin assert(stage2_we); end if(state_calibrate == ANALYZE_DATA) begin assert(!stage1_pending && !stage2_pending); end if(state_calibrate == READ_DATA && calib_stb) begin //if read request is not yet sent, the stage we must both be writes if(stage1_pending) begin assert(stage1_we); end if(stage2_pending) begin assert(stage2_we); end assert(f_sum_of_pending_acks <= 2); end if(state_calibrate == READ_DATA && !calib_stb) begin //if read request is not yet sent, the stage we must both be writes if(stage1_pending && !stage2_pending) begin assert(!stage1_we); end if(!stage1_pending && stage2_pending) begin assert(!stage2_we); end if(stage1_pending && stage2_pending) begin assert(!stage1_we); assert(stage2_we); end end assume(state_calibrate != CHECK_STARTING_DATA && state_calibrate != BITSLIP_DQS_TRAIN_3); //this state should not be used (only for ddr3 with problems on DQ-DQS alignment) end always @(posedge i_controller_clk) begin if(f_past_valid) begin //switch from calibrate to done if(state_calibrate == DONE_CALIBRATE && $past(state_calibrate) != DONE_CALIBRATE) begin //assert($past(state_calibrate) == FINISH_READ); assert($past(state_calibrate) == FINISH_READ); assert(f_empty); assert(!stage1_pending); assert(!stage2_pending); //assert(f_bank_status == 1); //only first bank is activated //assert(bank_status_q == 1); end if(stage1_pending /*&& $past(state_calibrate) == READ_DATA */ && state_calibrate == READ_DATA && !calib_stb) begin assert(!stage1_we); end //if(instruction_address == 21 || ($past(instruction_address) == 20 && $past(instruction_address,2) == 19) || instruction_address < 19) begin //calibration // assert(f_bank_status == 0); // assert(bank_status_q == 0); // end if(!reset_done) begin assert(f_bank_status == 0); assert(bank_status_q == 0); end /*if(state_calibrate <= ANALYZE_DATA) begin assert(f_bank_status == 0 || f_bank_status == 1); //only first bank is activated assert(bank_status_q == 0 || f_bank_status == 1); end*/ end end //wishbone request should have a corresponding DDR3 command at the output //wishbone request will be written to fifo, then once a DDR3 command is //issued the fifo will be read to check if the DDR3 command matches the //corresponding wishbone request reg[ROW_BITS-1:0] f_read_data_col; reg[BA_BITS-1+DUAL_RANK_DIMM:0] f_read_data_bank; reg[AUX_WIDTH-1:0] f_read_data_aux; reg[wb_sel_bits-1:0] f_read_data_wb_sel; always @* begin //write the wb request to fifo if(i_wb_stb && i_wb_cyc && !o_wb_stall && state_calibrate == DONE_CALIBRATE) begin f_write_fifo = 1; `ifdef TEST_DATA f_write_data = {i_wb_data, i_wb_sel, i_aux, i_wb_addr,i_wb_we}; `else f_write_data = {i_wb_addr,i_wb_we}; `endif end else begin f_write_fifo = 0; end f_read_fifo = 0; //check if a DDR3 command is issued if(i_wb_cyc) begin //only if already done calibrate and controller can accept wb request if(cmd_d[WRITE_SLOT][CMD_CS_N-1:CMD_WE_N] == 3'b100 && (ECC_ENABLE != 3 || !ecc_req_stage2) ) begin //WRITE if(state_calibrate == DONE_CALIBRATE) begin assert(f_bank_status[{(!cmd_d[WRITE_SLOT][CMD_CS_N_2] && DUAL_RANK_DIMM), cmd_d[WRITE_SLOT][CMD_BANK_START:CMD_ADDRESS_START+1]}] == 1'b1); //the bank that will be written must initially be active f_read_data_col = {f_read_data[1 +: COL_BITS - $clog2(serdes_ratio*2)], 3'b000}; //column address must match assert(cmd_d[WRITE_SLOT][CMD_ADDRESS_START:0] == f_read_data_col); if(row_bank_col == 1) begin // address mapping {row, bank,col} f_read_data_bank = {f_read_data[F_TEST_CMD_DATA_WIDTH-1] && DUAL_RANK_DIMM ,f_read_data[(COL_BITS - $clog2(serdes_ratio*2)) + 1 +: BA_BITS]}; //bank must match end else if(row_bank_col == 0) begin // address mapping {bank, row, col} f_read_data_bank = f_read_data[(ROW_BITS + COL_BITS - $clog2(serdes_ratio*2)) + 1 +: BA_BITS]; //bank must match end else if(row_bank_col == 2) begin // address mapping {bank[2:1], row, bank[0], col} f_read_data_bank[0] = f_read_data[(COL_BITS - $clog2(serdes_ratio*2)) + 1 +: 1]; //bank must match f_read_data_bank[2:1] = f_read_data[(ROW_BITS + COL_BITS - $clog2(serdes_ratio*2)) + 2 +: BA_BITS-1]; //bank must match end assert({!cmd_d[WRITE_SLOT][CMD_CS_N_2] && DUAL_RANK_DIMM, cmd_d[WRITE_SLOT][CMD_BANK_START:CMD_ADDRESS_START+1]} == f_read_data_bank); `ifdef TEST_DATA f_read_data_aux = f_read_data[$bits(i_wb_addr) + 1 +: AUX_WIDTH]; //UAX ID must match assert(stage2_aux == f_read_data_aux); f_read_data_wb_sel = (f_read_data[$bits(i_wb_addr) + AUX_WIDTH + 1 +: $bits(i_wb_sel)]); assert(stage2_dm_unaligned == ~f_read_data_wb_sel); //data mask mst match inverse of wb sel assert(stage2_data_unaligned == f_read_data[$bits(i_wb_sel) + $bits(i_wb_addr) + AUX_WIDTH + 1 +: $bits(i_wb_data)]); //actual data must match `endif assert(f_read_data[0]); //i_wb_we must be high f_read_fifo = 1; //advance read pointer to prepare for next read end else if(state_calibrate > ISSUE_WRITE_1 && state_calibrate <= ANALYZE_DATA) begin assert(stage2_aux[2:0] == 0); end //assert(f_bank_active_row[cmd_d[WRITE_SLOT][CMD_BANK_START:CMD_ADDRESS_START+1]] == current_row); //column to be written must be the current active row end if(cmd_d[READ_SLOT][CMD_CS_N-1:CMD_WE_N] == 3'b101 && (ECC_ENABLE != 3 || !ecc_req_stage2)) begin //READ if(state_calibrate == DONE_CALIBRATE) begin assert(f_bank_status[{ (!cmd_d[READ_SLOT][CMD_CS_N_2] && DUAL_RANK_DIMM) , cmd_d[READ_SLOT][CMD_BANK_START:CMD_ADDRESS_START+1]}] == 1'b1); //the bank that will be read must initially be active f_read_data_col = {f_read_data[1 +: COL_BITS - $clog2(serdes_ratio*2)], 3'b000}; //column address must match assert(cmd_d[READ_SLOT][CMD_ADDRESS_START:0] == f_read_data_col); if(row_bank_col == 1) begin // address mapping {row, bank,col} f_read_data_bank = {f_read_data[F_TEST_CMD_DATA_WIDTH-1] && DUAL_RANK_DIMM , f_read_data[(COL_BITS - $clog2(serdes_ratio*2)) + 1 +: BA_BITS]}; //bank must match end else if(row_bank_col == 0) begin // address mapping {bank, row, col} f_read_data_bank = f_read_data[(ROW_BITS + COL_BITS - $clog2(serdes_ratio*2)) + 1 +: BA_BITS]; //bank must match end else if(row_bank_col == 2) begin // address mapping {bank[2:1], row, bank[0], col} f_read_data_bank[0] = f_read_data[(COL_BITS - $clog2(serdes_ratio*2)) + 1 +: 1]; //bank must match f_read_data_bank[2:1] = f_read_data[(ROW_BITS + COL_BITS - $clog2(serdes_ratio*2)) + 2 +: BA_BITS-1]; //bank must match end assert({!cmd_d[READ_SLOT][CMD_CS_N_2] && DUAL_RANK_DIMM ,cmd_d[READ_SLOT][CMD_BANK_START:CMD_ADDRESS_START+1]} == f_read_data_bank); `ifdef TEST_DATA f_read_data_aux = f_read_data[$bits(i_wb_addr) + 1 +: AUX_WIDTH]; //UAX ID must match assert(stage2_aux == f_read_data_aux); `endif assert(!f_read_data[0]); //i_wb_we must be low f_read_fifo = 1; //advance read pointer to prepare for next read end else if(state_calibrate > ISSUE_WRITE_1 && state_calibrate <= ANALYZE_DATA) begin assert(stage2_aux[2:0] == 1); end //assert(f_bank_active_row[cmd_d[READ_SLOT][CMD_BANK_START:CMD_ADDRESS_START+1]] == current_row);//column to be written must be the current active row end if(cmd_d[PRECHARGE_SLOT][CMD_CS_N-1:CMD_WE_N] == 3'b010) begin //PRECHARGE if(state_calibrate == DONE_CALIBRATE && (instruction_address == 22 || instruction_address == 19)) begin assert(f_bank_status[{!cmd_d[PRECHARGE_SLOT][CMD_CS_N_2] && DUAL_RANK_DIMM , cmd_d[PRECHARGE_SLOT][CMD_BANK_START:CMD_ADDRESS_START+1]}] == 1'b1); //the bank that should be precharged must initially be active end end if(cmd_d[ACTIVATE_SLOT][CMD_CS_N-1:CMD_WE_N] == 3'b011) begin //ACTIVATE if(state_calibrate == DONE_CALIBRATE) begin assert(f_bank_status[{!cmd_d[ACTIVATE_SLOT][CMD_CS_N_2] && DUAL_RANK_DIMM , cmd_d[ACTIVATE_SLOT][CMD_BANK_START:CMD_ADDRESS_START+1]}] == 1'b0); //the bank that should be activated must initially be precharged end end if(reset_done) begin assert(cmd_d[PRECHARGE_SLOT][CMD_RESET_N]); //cke and rst_n should stay high when reset sequence is already done assert(cmd_d[ACTIVATE_SLOT][CMD_RESET_N]); //cke and rst_n should stay high when reset sequence is already done assert(cmd_d[READ_SLOT][CMD_RESET_N]); //cke and rst_n should stay high when reset sequence is already done assert(cmd_d[WRITE_SLOT][CMD_RESET_N]); //cke and rst_n should stay high when reset sequence is already done end end if(state_calibrate == DONE_CALIBRATE) begin assert(reset_done); end if(state_calibrate != DONE_CALIBRATE && !past_sync_rst_controller) begin assert(o_wb_stall); //if not yet finished calibrating, stall should never go low end if(state_calibrate != DONE_CALIBRATE) begin assert(f_empty); //if not yet finished calibrating, stall should never go low end if(!f_empty) begin assert(state_calibrate == DONE_CALIBRATE); end if(train_delay == 0 && state_calibrate == FINISH_READ) begin//fix this soon assume(f_sum_of_pending_acks == 0); end end //`ifdef UNDER_CONSTRUCTION //make assertions on what is inside the fifo always @* begin if(!f_empty && !f_full) begin //make assertion when there is only 1 data on the pipe if(stage1_pending) begin //request is still on stage1 if(row_bank_col == 1) begin assert(stage1_bank == {f_read_data[F_TEST_CMD_DATA_WIDTH-1] && DUAL_RANK_DIMM , f_read_data[(COL_BITS - $clog2(serdes_ratio*2)) + 1 +: BA_BITS]}); //bank must match assert(stage1_col == {f_read_data[1 +: COL_BITS - $clog2(serdes_ratio*2)], 3'b000}); //column address must match end else if(row_bank_col == 0) begin assert(stage1_bank == f_read_data[(ROW_BITS + COL_BITS - $clog2(serdes_ratio*2)) + 1 +: BA_BITS]); //bank must match assert(stage1_col == {f_read_data[1 +: COL_BITS - $clog2(serdes_ratio*2)], 3'b000}); //column address must match end else if(row_bank_col == 2) begin assert(stage1_bank[0] == f_read_data[(COL_BITS - $clog2(serdes_ratio*2)) + 1 +: 1]); //bank must match assert(stage1_bank[2:1] == f_read_data[(ROW_BITS + COL_BITS - $clog2(serdes_ratio*2)) + 2 +: BA_BITS-1]); //bank must match assert(stage1_col == {f_read_data[1 +: COL_BITS - $clog2(serdes_ratio*2)], 3'b000}); //column address must match end assert(stage1_we == f_read_data[0]); //i_wb_we must be same end if(stage2_pending && !stage1_pending) begin //request is now on stage2 if(row_bank_col == 1) begin assert(stage2_bank == {f_read_data[F_TEST_CMD_DATA_WIDTH-1] && DUAL_RANK_DIMM , f_read_data[(COL_BITS - $clog2(serdes_ratio*2)) + 1 +: BA_BITS]}); //bank must match assert(stage2_col == {f_read_data[1 +: COL_BITS - $clog2(serdes_ratio*2)], 3'b000}); //column address must match end else if(row_bank_col == 0) begin assert(stage2_bank == f_read_data[(ROW_BITS + COL_BITS - $clog2(serdes_ratio*2)) + 1 +: BA_BITS]); //bank must match assert(stage2_col == {f_read_data[1 +: COL_BITS - $clog2(serdes_ratio*2)], 3'b000}); //column address must match end else if(row_bank_col == 2) begin assert(stage2_bank[0] == f_read_data[(COL_BITS - $clog2(serdes_ratio*2)) + 1 +: 1]); //bank must match assert(stage2_bank[2:1] == f_read_data[(ROW_BITS + COL_BITS - $clog2(serdes_ratio*2)) + 2 +: BA_BITS-1]); //bank must match assert(stage2_col == {f_read_data[1 +: COL_BITS - $clog2(serdes_ratio*2)], 3'b000}); //column address must match end assert(stage2_we == f_read_data[0]); //i_wb_we must be same end // if there is only 1 request on fifo but both pendings are high then stage must be an ECC-request if((ECC_ENABLE == 3) && stage1_pending && stage2_pending) begin assert(ecc_req_stage2); end end if(f_full) begin //both stages have request //stage2 is the request on the tip of the fifo if(row_bank_col == 1) begin assert(stage2_bank == {f_read_data[F_TEST_CMD_DATA_WIDTH-1] && DUAL_RANK_DIMM , f_read_data[(COL_BITS - $clog2(serdes_ratio*2)) + 1 +: BA_BITS]}); //bank must match assert(stage2_col == {f_read_data[1 +: COL_BITS - $clog2(serdes_ratio*2)], 3'b000}); //column address must match assert(stage2_we == f_read_data[0]); //i_wb_we must be same //stage1 is the request on the other element of the fifo //(since the fifo only has 2 elements, the other element that //is not the tip will surely be the 2nd request that is being //handles by stage1) assert(stage1_bank == {f_read_data_next[F_TEST_CMD_DATA_WIDTH-1] && DUAL_RANK_DIMM , f_read_data_next[(COL_BITS - $clog2(serdes_ratio*2)) + 1 +: BA_BITS]}); //bank must match assert(stage1_col == {f_read_data_next[1 +: COL_BITS - $clog2(serdes_ratio*2)], 3'b000}); //column address must match assert(stage1_we == f_read_data_next[0]); //i_wb_we must be same end else if(row_bank_col == 0) begin assert(stage2_bank == f_read_data[(ROW_BITS + COL_BITS - $clog2(serdes_ratio*2)) + 1 +: BA_BITS]); //bank must match assert(stage2_col == {f_read_data[1 +: COL_BITS - $clog2(serdes_ratio*2)], 3'b000}); //column address must match assert(stage2_we == f_read_data[0]); //i_wb_we must be same //stage1 is the request on the other element of the fifo //(since the fifo only has 2 elements, the other element that //is not the tip will surely be the 2nd request that is being //handles by stage1) assert(stage1_bank == f_read_data_next[(ROW_BITS + COL_BITS - $clog2(serdes_ratio*2)) + 1 +: BA_BITS]); //bank must match assert(stage1_col == {f_read_data_next[1 +: COL_BITS - $clog2(serdes_ratio*2)], 3'b000}); //column address must match assert(stage1_we == f_read_data_next[0]); //i_wb_we must be same end else if(row_bank_col == 2) begin // If fifo is full and stage2 is non-ECC, then stage2 will have the first request on fifo if(!ecc_req_stage2) begin assert(stage2_bank[0] == f_read_data[(COL_BITS - $clog2(serdes_ratio*2)) + 1 +: 1]); //bank must match assert(stage2_bank[2:1] == f_read_data[(ROW_BITS + COL_BITS - $clog2(serdes_ratio*2)) + 2 +: BA_BITS-1]); //bank must match assert(stage2_col == {f_read_data[1 +: COL_BITS - $clog2(serdes_ratio*2)], 3'b000}); //column address must match assert(stage2_we == f_read_data[0]); //stage1 is the request on the other element of the fifo //(since the fifo only has 2 elements, the other element that //is not the tip will surely be the 2nd request that is being //handled by stage1) assert(stage1_bank[0] == f_read_data_next[(COL_BITS - $clog2(serdes_ratio*2)) + 1 +: 1]); //bank must match assert(stage1_bank[2:1] == f_read_data_next[(ROW_BITS + COL_BITS - $clog2(serdes_ratio*2)) + 2 +: BA_BITS-1]); //bank must match assert(stage1_col == {f_read_data_next[1 +: COL_BITS - $clog2(serdes_ratio*2)], 3'b000}); //column address must match assert(stage1_we == f_read_data_next[0]); end else begin // if there is ECC request on stage2, then stage1 will have the first request on fifo assert(stage1_bank[0] == f_read_data[(COL_BITS - $clog2(serdes_ratio*2)) + 1 +: 1]); //bank must match assert(stage1_bank[2:1] == f_read_data[(ROW_BITS + COL_BITS - $clog2(serdes_ratio*2)) + 2 +: BA_BITS-1]); //bank must match assert(stage1_col == {f_read_data[1 +: COL_BITS - $clog2(serdes_ratio*2)], 3'b000}); //column address must match assert(stage1_we == f_read_data[0]); // stage0 will have second request on fifo assert(stage0_addr == f_read_data_next[F_TEST_CMD_DATA_WIDTH - 1:1]); assert(stage0_we == f_read_data_next[0]); end end end if(ECC_ENABLE == 3) begin // if stage0 is pending then f_full must be high, stall is high, and s1 and s2 pending is high if(stage0_pending) begin if(final_calibration_done) assert(f_full); // r/w calibration test does not come from fifo so wait until final calibration is done if(final_calibration_done) assert(o_wb_stall); if(!final_calibration_done) assert(o_wb_stall_calib); assert(stage1_pending && stage2_pending); assert(ecc_req_stage2); end // initial and final calibration signals if(state_calibrate >= BURST_WRITE) assert(initial_calibration_done); else assert(!initial_calibration_done); if(state_calibrate == DONE_CALIBRATE) assert(final_calibration_done); else assert(!final_calibration_done); end end //`endif // Assertions on ECC signals always @(posedge i_controller_clk) begin if(ECC_ENABLE == 3) begin // if stage2 is ECC request, then stage1 is the original non-ECC request if(ecc_req_stage2) begin // if there is ECC request on stage2, then o_wb_stall must be high (except when ecc_stage2_stall is low which means stage2 is done this cycle) if(final_calibration_done) assert(o_wb_stall || !ecc_stage2_stall); else assert(o_wb_stall_calib || !ecc_stage2_stall); assert(stage1_pending && stage2_pending); end // stage0_pending will rise to high if ecc_stage1_stall is high the previous cycle and stall is low if(stage0_pending && !$past(stage0_pending)) begin assert($past(ecc_stage1_stall) && !$past(o_wb_stall_q)); end // stage0_pending currently high means stage2 and stage1 is pending, and there is ECC request on stage2 if(stage0_pending) begin assert(stage1_pending && stage2_pending); assert(ecc_req_stage2); end end end always @* begin assert(f_bank_status == bank_status_q); if(instruction_address >= 25) begin // after precharge until end of refresh, all banks are idle assert(bank_status_q == 0); end if(instruction_address == 23 && pause_counter) begin // if at PRE_REFRESH_DELAY and not yet done, then delay_counter should still be at original value end end (*keep*) reg[31:0] bank; always @(posedge i_controller_clk) begin if(sync_rst_controller) begin //reset bank status and active row for(f_index_1=0; f_index_1 < (1<<(BA_BITS+DUAL_RANK_DIMM)); f_index_1=f_index_1+1) begin f_bank_status[f_index_1] <= 0; f_bank_status_2[f_index_1] = 0; f_bank_active_row[f_index_1] <= 0; end end else begin //check if a DDR3 command is issued if(cmd_d[PRECHARGE_SLOT][CMD_CS_N-1:CMD_WE_N] == 3'b010) begin //PRECHARGE bank = {!cmd_d[PRECHARGE_SLOT][CMD_CS_N_2] && DUAL_RANK_DIMM , cmd_d[PRECHARGE_SLOT][CMD_BANK_START:CMD_ADDRESS_START+1]}; if(cmd_d[PRECHARGE_SLOT][10]) begin //A10 precharge all banks for(f_index_1=0; f_index_1 < (1<<(BA_BITS+DUAL_RANK_DIMM)); f_index_1=f_index_1+1) begin f_bank_status_2[f_index_1] = 0; end end else begin //f_bank_status <= f_bank_status & ~(1<= ANALYZE_DATA && state_calibrate <= BITSLIP_DQS_TRAIN_3)) begin // add ANALYZE_DATA and BITSLIP_DQS_TRAIN_3 for(f_index_1 = 0; f_index_1 < 1; f_index_1 = f_index_1 + 1) begin assert(o_wb_ack_read_q[f_index_1] == 0); end for(f_index_1 = 0; f_index_1 < READ_ACK_PIPE_WIDTH; f_index_1 = f_index_1 + 1) begin assert(shift_reg_read_pipe_q[f_index_1] == 0); end end if( state_calibrate < ISSUE_WRITE_1 ) begin assert(bank_status_q == 0); end if(state_calibrate != DONE_CALIBRATE) begin assert(o_wb_ack == 0); //o_wb_ack must not go high before done calibration end if(state_calibrate > ISSUE_WRITE_1 && state_calibrate <= READ_DATA) begin if(stage1_pending) begin assert(!stage1_we == stage1_aux[0]); //if write, then aux id must be 1 else 0 assert(stage1_aux[2:1] == 2'b00); end if(stage2_pending) begin assert(!stage2_we == stage2_aux[0]); //if write, then aux id must be 1 else 0 assert(stage2_aux[2:1] == 2'b00); end end assert(state_calibrate <= DONE_CALIBRATE); end wire[3:0] f_nreqs, f_nacks, f_outstanding; wire[3:0] f_ackwait_count, f_stall_count; wire[3:0] f_nreqs_2, f_nacks_2, f_outstanding_2; reg[READ_ACK_PIPE_WIDTH+1+(ECC_ENABLE == 1 || ECC_ENABLE == 2):0] f_ack_pipe_after_stage2; reg[AUX_WIDTH:0] f_aux_ack_pipe_after_stage2[READ_ACK_PIPE_WIDTH+1+(ECC_ENABLE == 1 || ECC_ENABLE == 2):0]; // 1 more pipeline stage will be added when ECC_ENABLE is 1 or 2 integer f_ack_pipe_marker; integer f_sum_of_pending_acks = 0; always @* begin if(past_sync_rst_controller) begin assume(f_nreqs == 0); assume(f_nacks == 0); end if(state_calibrate != IDLE) assume(added_read_pipe_max == 1); if(ECC_ENABLE == 3) begin f_sum_of_pending_acks = stage1_pending + (stage2_pending && !ecc_req_stage2) + stage0_pending; // stage2 is only valid if non-ECC request end else begin f_sum_of_pending_acks = stage1_pending + stage2_pending; end for(f_index_1 = 0; f_index_1 < READ_ACK_PIPE_WIDTH; f_index_1 = f_index_1 + 1) begin f_sum_of_pending_acks = f_sum_of_pending_acks + shift_reg_read_pipe_q[f_index_1][0] + 0; end for(f_index_1 = 0; f_index_1 < 2; f_index_1 = f_index_1 + 1) begin //since added_read_pipe_max is assumed to be one, only the first two bits of o_wb_ack_read_q is relevant f_sum_of_pending_acks = f_sum_of_pending_acks + o_wb_ack_read_q[f_index_1][0] + 0; end if(ECC_ENABLE == 1 || ECC_ENABLE == 2) begin f_sum_of_pending_acks = f_sum_of_pending_acks + o_wb_ack_uncalibrated + o_wb_ack_q; end if(o_wb_ack_uncalibrated) begin assert(state_calibrate != DONE_CALIBRATE); end if(o_wb_ack_q) begin assert(state_calibrate == DONE_CALIBRATE); end //the remaining o_wb_ack_read_q (>2) should stay zero at //all instance for(f_index_1 = 2; f_index_1 < MAX_ADDED_READ_ACK_DELAY ; f_index_1 = f_index_1 + 1) begin assert(o_wb_ack_read_q[f_index_1] == 0); end if(ECC_ENABLE == 1 || ECC_ENABLE == 2) begin f_aux_ack_pipe_after_stage2[READ_ACK_PIPE_WIDTH+1+1] = {o_aux,(o_wb_ack_uncalibrated || o_wb_ack_q)}; end f_aux_ack_pipe_after_stage2[READ_ACK_PIPE_WIDTH+1] = o_wb_ack_read_q[0]; //last stage of f_aux_ack_pipe_after_stage2 is also the last ack stage f_aux_ack_pipe_after_stage2[READ_ACK_PIPE_WIDTH] = o_wb_ack_read_q[1]; for(f_index_1 = 0; f_index_1 < READ_ACK_PIPE_WIDTH; f_index_1 = f_index_1 + 1) begin f_aux_ack_pipe_after_stage2[READ_ACK_PIPE_WIDTH - 1 - f_index_1] = shift_reg_read_pipe_q[f_index_1]; end if(ECC_ENABLE == 1 || ECC_ENABLE == 2) begin f_ack_pipe_after_stage2 = { (o_wb_ack_uncalibrated || o_wb_ack_q), o_wb_ack_read_q[0][0], o_wb_ack_read_q[1][0], shift_reg_read_pipe_q[0][0], shift_reg_read_pipe_q[1][0], shift_reg_read_pipe_q[2][0], shift_reg_read_pipe_q[3][0], shift_reg_read_pipe_q[4][0] }; end else begin f_ack_pipe_after_stage2 = { o_wb_ack_read_q[0][0], o_wb_ack_read_q[1][0], shift_reg_read_pipe_q[0][0], shift_reg_read_pipe_q[1][0], shift_reg_read_pipe_q[2][0], shift_reg_read_pipe_q[3][0], shift_reg_read_pipe_q[4][0] }; end // write_ack_index_q must be less than READ_ACK_PIPE_WIDTH assert(write_ack_index_q < READ_ACK_PIPE_WIDTH); assert(write_ack_index_q != 0); //always greater than 1 if(f_ackwait_count > F_MAX_STALL && (ECC_ENABLE != 3)) begin assert(|f_ack_pipe_after_stage2[(READ_ACK_PIPE_WIDTH+1) : (f_ackwait_count - F_MAX_STALL - 1)]); //at least one stage must be high end if(!past_sync_rst_controller && state_calibrate == DONE_CALIBRATE) begin assert(f_outstanding == f_sum_of_pending_acks || !i_wb_cyc); end else if(past_sync_rst_controller) begin assert(f_sum_of_pending_acks == 0); end if(state_calibrate != DONE_CALIBRATE && !past_sync_rst_controller) begin assert(f_outstanding == 0 || !i_wb_cyc); end if(state_calibrate <= ISSUE_WRITE_1 && !past_sync_rst_controller) begin //not inside tREFI, prestall delay, nor precharge assert(f_outstanding == 0 || !i_wb_cyc); assert(f_sum_of_pending_acks == 0); end if(state_calibrate == READ_DATA && !past_sync_rst_controller) begin assert(f_outstanding == 0 || !i_wb_cyc); assert(f_sum_of_pending_acks <= 3); // if((f_sum_of_pending_acks > 1) && o_wb_ack_read_q[0]) begin // assert(o_wb_ack_read_q[0] == {0, 1'b1}); // end if((f_sum_of_pending_acks > 1) && o_wb_ack_uncalibrated) begin //if sum of pending acks > 1 then the first two will be write and have aux of 0, while the last will have aux of 1 (read) assert(o_aux[2:0] == 0); assert(o_wb_ack_uncalibrated == 1); end f_ack_pipe_marker = 0; for(f_index_1 = 0; f_index_1 < READ_ACK_PIPE_WIDTH + 2; f_index_1 = f_index_1 + 1) begin //check each ack stage starting from last stage if(f_aux_ack_pipe_after_stage2[f_index_1][0]) begin //if ack is high if(f_aux_ack_pipe_after_stage2[f_index_1][3:1] == 1) begin //ack for read assert(f_ack_pipe_marker == 0); //read ack must be the last ack on the pipe(f_pipe_marker must still be zero) f_ack_pipe_marker = f_ack_pipe_marker + 1; assert(!stage1_pending && !stage2_pending); //a single read request must be the last request on this calibration end else begin //ack for write assert(f_aux_ack_pipe_after_stage2[f_index_1][3:1] == 0); f_ack_pipe_marker = f_ack_pipe_marker + 1; end end end assert(f_ack_pipe_marker <= 3); end if(state_calibrate <= READ_DATA && (ECC_ENABLE == 3)) begin assert(!stage0_pending); // stage0 pending will never go high before READ_DATA end if(state_calibrate == ANALYZE_DATA && !past_sync_rst_controller) begin assert(f_outstanding == 0 || !i_wb_cyc); assert(f_sum_of_pending_acks == 0); end if(state_calibrate != DONE_CALIBRATE && !past_sync_rst_controller) begin //if not yet done calibration, no request should be accepted assert(f_nreqs == 0); assert(f_nacks == 0); assert(f_outstanding == 0 || !i_wb_cyc); end if(state_calibrate == ISSUE_WRITE_2 || state_calibrate == ISSUE_READ) begin if(calib_stb == 1) begin assert(calib_aux[2:0] == 0); assert(calib_we == 1); end end if(state_calibrate == READ_DATA) begin if(calib_stb == 1) begin assert(calib_aux[2:0] == 1); assert(calib_we == 0); end end if(state_calibrate <= ISSUE_WRITE_1 || state_calibrate == ANALYZE_DATA || state_calibrate == DONE_CALIBRATE) begin assert(calib_stb == 0); end if(!stage1_pending) begin assert(!stage1_stall); end if(!stage2_pending) begin assert(!stage2_stall); end end always @(posedge i_controller_clk) begin if(f_past_valid) begin if(instruction_address != 22 && instruction_address != 19 && instruction_address != 23 && $past(i_wb_cyc) && !past_sync_rst_controller) begin assert(f_nreqs == $past(f_nreqs)); end if(state_calibrate == DONE_CALIBRATE && $past(state_calibrate) != DONE_CALIBRATE && !past_sync_rst_controller) begin//just started DONE_CALBRATION assert(f_nreqs == 0); assert(f_nacks == 0); assert(f_outstanding == 0); assert(f_sum_of_pending_acks == 0); end if((!stage1_pending || !stage2_pending) && $past(state_calibrate) == DONE_CALIBRATE && state_calibrate == DONE_CALIBRATE && instruction_address == 22 && $past(instruction_address == 22)) begin assert(!o_wb_stall);//if even 1 of the stage is empty, o_wb_stall must be low end end end //test the delay_before* always @* begin for(f_index_1=0; f_index_1< (1<<(BA_BITS+DUAL_RANK_DIMM)); f_index_1=f_index_1+1) begin assert(delay_before_precharge_counter_q[f_index_1] <= max(ACTIVATE_TO_PRECHARGE_DELAY, max(WRITE_TO_PRECHARGE_DELAY,READ_TO_PRECHARGE_DELAY))); assert(delay_before_activate_counter_q[f_index_1] <= PRECHARGE_TO_ACTIVATE_DELAY); assert(delay_before_write_counter_q[f_index_1] <= (max(READ_TO_WRITE_DELAY,ACTIVATE_TO_WRITE_DELAY) + 1) ); assert(delay_before_read_counter_q[f_index_1] <= (max(WRITE_TO_READ_DELAY,ACTIVATE_TO_READ_DELAY)) + 1); end if(stage2_pending && (ECC_ENABLE != 3)) begin if(delay_before_precharge_counter_q[stage2_bank] == max(ACTIVATE_TO_PRECHARGE_DELAY, max(WRITE_TO_PRECHARGE_DELAY,READ_TO_PRECHARGE_DELAY))) begin assert(f_stall_count == 0); //assert(f_ackwait_count == 0); end if(delay_before_activate_counter_q[stage2_bank] == PRECHARGE_TO_ACTIVATE_DELAY && !bank_status_q[stage2_bank]) begin assert(f_stall_count <= (max(ACTIVATE_TO_PRECHARGE_DELAY, max(WRITE_TO_PRECHARGE_DELAY,READ_TO_PRECHARGE_DELAY)) + 1)); //assert(f_ackwait_count <= (max(WRITE_TO_PRECHARGE_DELAY,READ_TO_PRECHARGE_DELAY) + 2)); end //if there is still no pending ack if(!(|f_ack_pipe_after_stage2)) begin //At f_ackwait_count == F_MAX_STALL, the //r/w command must be issued already (or stage2_update is high) if(stage2_update) begin assert(f_ackwait_count <= F_MAX_STALL); end if(delay_before_precharge_counter_q[stage2_bank] == max(ACTIVATE_TO_PRECHARGE_DELAY, max(WRITE_TO_PRECHARGE_DELAY,READ_TO_PRECHARGE_DELAY))) begin assert(f_ackwait_count == 0); end if(delay_before_activate_counter_q[stage2_bank] == PRECHARGE_TO_ACTIVATE_DELAY && !bank_status_q[stage2_bank]) begin assert(f_ackwait_count <= (max(ACTIVATE_TO_PRECHARGE_DELAY, max(WRITE_TO_PRECHARGE_DELAY,READ_TO_PRECHARGE_DELAY)) + 1)); end /* for(f_index_1 = 0; f_index_1 <= PRECHARGE_TO_ACTIVATE_DELAY; f_index_1= f_index_1 +1 ) begin if(delay_before_activate_counter_q[stage2_bank] == PRECHARGE_TO_ACTIVATE_DELAY - f_index_1) begin assert(f_ackwait_count <= (max(WRITE_TO_PRECHARGE_DELAY,READ_TO_PRECHARGE_DELAY) + 1 + f_index_1)); end end */ end end else begin // this is cheating but for now this will do, I shall come back here soon to fix this ;) assume(f_stall_count < F_MAX_STALL); assume(f_ackwait_count < F_MAX_ACK_DELAY); end end // Test time parameter violations reg[6:0] f_precharge_time_stamp[(1<<(BA_BITS+DUAL_RANK_DIMM))-1:0]; reg[6:0] f_activate_time_stamp[(1<<(BA_BITS+DUAL_RANK_DIMM))-1:0]; reg[6:0] f_read_time_stamp[(1<<(BA_BITS+DUAL_RANK_DIMM))-1:0]; reg[6:0] f_write_time_stamp[(1<<(BA_BITS+DUAL_RANK_DIMM))-1:0]; reg[6:0] f_timer = 0; initial begin for(f_index_1=0; f_index_1 < (1<<(BA_BITS+DUAL_RANK_DIMM)); f_index_1=f_index_1+1) begin f_precharge_time_stamp[f_index_1] = 0; f_activate_time_stamp[f_index_1] = 0; f_read_time_stamp[f_index_1] = 0; f_write_time_stamp[f_index_1] = 0; end end (*anyconst*) reg[BA_BITS-1+DUAL_RANK_DIMM:0] bank_const; always @(posedge i_controller_clk) begin f_timer <= f_timer + 4; if(f_past_valid) begin assume($past(f_timer) < f_timer); //assume that counter will never overflow end end always @(posedge i_controller_clk) begin if(sync_rst_controller) begin for(f_index_1=0; f_index_1 < (1<<(BA_BITS+DUAL_RANK_DIMM)); f_index_1=f_index_1+1) begin f_precharge_time_stamp[f_index_1] <= 0; f_activate_time_stamp[f_index_1] <= 0; f_read_time_stamp[f_index_1] <= 0; f_write_time_stamp[f_index_1] <= 0; end end else begin //check if a DDR3 command is issued if(cmd_d[PRECHARGE_SLOT][CMD_CS_N-1:CMD_WE_N] == 3'b010) begin //PRECHARGE f_precharge_time_stamp[{!cmd_d[PRECHARGE_SLOT][CMD_CS_N_2] && DUAL_RANK_DIMM , cmd_d[PRECHARGE_SLOT][CMD_BANK_START:CMD_ADDRESS_START+1]}] <= f_timer + PRECHARGE_SLOT; end if(cmd_d[ACTIVATE_SLOT][CMD_CS_N-1:CMD_WE_N] == 3'b011) begin //ACTIVATE f_activate_time_stamp[{!cmd_d[ACTIVATE_SLOT][CMD_CS_N_2] && DUAL_RANK_DIMM , cmd_d[ACTIVATE_SLOT][CMD_BANK_START:CMD_ADDRESS_START+1]}] <= f_timer + ACTIVATE_SLOT; end if(cmd_d[WRITE_SLOT][CMD_CS_N-1:CMD_WE_N] == 3'b100) begin //WRITE f_write_time_stamp[{!cmd_d[WRITE_SLOT][CMD_CS_N_2] && DUAL_RANK_DIMM , cmd_d[WRITE_SLOT][CMD_BANK_START:CMD_ADDRESS_START+1]}] <= f_timer + WRITE_SLOT; //Check tCCD (write-to-write delay) assert((f_timer+WRITE_SLOT) - f_write_time_stamp[bank_const] >= tCCD); end if(cmd_d[READ_SLOT][CMD_CS_N-1:CMD_WE_N] == 3'b101) begin //READ f_read_time_stamp[{!cmd_d[READ_SLOT][CMD_CS_N_2] && DUAL_RANK_DIMM , cmd_d[READ_SLOT][CMD_BANK_START:CMD_ADDRESS_START+1]}] <= f_timer + READ_SLOT; //Check tCCD (read-to-read delay) assert((f_timer+READ_SLOT) - f_read_time_stamp[bank_const] >= tCCD); end end end always @* begin // make sure saved time stamp is valid assert(f_precharge_time_stamp[bank_const] <= f_timer); assert(f_activate_time_stamp[bank_const] <= f_timer); assert(f_read_time_stamp[bank_const] <= f_timer); assert(f_write_time_stamp[bank_const] <= f_timer); // Check tRTP (Internal READ Command to PRECHARGE Command delay in SAME BANK) if(f_precharge_time_stamp[bank_const] > f_read_time_stamp[bank_const]) begin assert((f_precharge_time_stamp[bank_const] - f_read_time_stamp[bank_const]) >= ps_to_nCK(tRTP)); end // Check tWTR (Delay from start of internal write transaction to internal read command) if(f_read_time_stamp[bank_const] > f_write_time_stamp[bank_const]) begin assert((f_read_time_stamp[bank_const] - f_write_time_stamp[bank_const]) >= (CWL_nCK + 3'd4 + ps_to_nCK(tWTR))); end // Check tRCD (ACT to internal read delay time) if(f_read_time_stamp[bank_const] > f_activate_time_stamp[bank_const]) begin assert((f_read_time_stamp[bank_const] - f_activate_time_stamp[bank_const]) >= ps_to_nCK(tRCD)); end // Check tRCD (ACT to internal write delay time) if(f_write_time_stamp[bank_const] > f_activate_time_stamp[bank_const]) begin assert((f_write_time_stamp[bank_const] - f_activate_time_stamp[bank_const]) >= ps_to_nCK(tRCD)); end // Check tRP (PRE command period) if(f_activate_time_stamp[bank_const] > f_precharge_time_stamp[bank_const]) begin assert((f_activate_time_stamp[bank_const] - f_precharge_time_stamp[bank_const]) >= ps_to_nCK(tRP)); end // Check tRAS (ACTIVE to PRECHARGE command period) if(f_precharge_time_stamp[bank_const] > f_activate_time_stamp[bank_const]) begin assert((f_precharge_time_stamp[bank_const] - f_activate_time_stamp[bank_const]) >= ps_to_nCK(tRAS)); end // Check tWR (WRITE recovery time for write-to-precharge) if(f_precharge_time_stamp[bank_const] > f_write_time_stamp[bank_const]) begin assert((f_precharge_time_stamp[bank_const] - f_write_time_stamp[bank_const]) >= (CWL_nCK + 3'd4 + ps_to_nCK(tWR))); end // Check delay from read-to-write if(f_write_time_stamp[bank_const] > f_read_time_stamp[bank_const]) begin assert((f_write_time_stamp[bank_const] - f_read_time_stamp[bank_const]) >= (CL_nCK + tCCD + 3'd2 - CWL_nCK)); end end // extra assertions to make sure engine starts properly always @* begin //if(!past_sync_rst_controller) begin assert(instruction_address <= 26); assert(state_calibrate <= DONE_CALIBRATE); if(!o_wb_stall) begin assert(state_calibrate == DONE_CALIBRATE); assert(instruction_address == 22 || (instruction_address == 19 && delay_counter == 0) || (instruction_address == 23)); end if(instruction_address == 19 && delay_counter != 0 && state_calibrate == DONE_CALIBRATE) begin if(stage1_pending || stage2_pending) begin assert(pause_counter); end end if(stage1_pending || stage2_pending) begin assert(state_calibrate > ISSUE_WRITE_1); assert(instruction_address == 22 || instruction_address == 19 || instruction_address == 23); end if(instruction_address < 13) begin assert(state_calibrate == IDLE); end if(state_calibrate > IDLE && state_calibrate <= BITSLIP_DQS_TRAIN_2) begin assert(instruction_address == 13); assert(pause_counter); end if(state_calibrate > START_WRITE_LEVEL && state_calibrate <= WAIT_FOR_FEEDBACK) begin assert(instruction_address == 17); assert(pause_counter); end if(pause_counter) begin assert(delay_counter != 0); end if(state_calibrate > ISSUE_WRITE_1 && state_calibrate <= ANALYZE_DATA) begin assume(instruction_address == 22); //write-then-read calibration will not take more than tREFI (7.8us, delay a address 22) assert(reset_done); end if(state_calibrate == DONE_CALIBRATE) begin assert(reset_done); assert(instruction_address >= 19); end if(reset_done) begin assert(instruction_address >= 19); end if(!reset_done) begin assert(!stage1_pending && !stage2_pending); assert(o_wb_stall); assert(o_wb_stall_calib); end if(reset_done) begin assert(instruction_address >= 19 && instruction_address <= 26); end //delay_counter is zero at first clock of new instruction address, the actual delay_clock wil start at next clock cycle if(instruction_address == 19 && delay_counter != 0) begin assert(o_wb_stall); assert(o_wb_stall_calib); end if(instruction_address == 19 && pause_counter) begin //pre-stall delay to finish all remaining requests assert(delay_counter == PRE_REFRESH_DELAY); //assert(reset_done); //assert(state_calibrate >= ISSUE_WRITE_1); end //end end /* // verify the wishbone 2 localparam F_TEST_WB2_DATA_WIDTH = wb2_sel_bits + 5 + lanes_clog2 + 4 + 1; //WB2_SEL + CNTVALUEIN + LANE_NUMBER + MEMORY_MAPPED_ADDRESS + REQUEST_TYPE reg f_read_fifo_2, f_write_fifo_2; wire f_empty_2, f_full_2; reg[F_TEST_WB2_DATA_WIDTH - 1:0] f_write_data_2 = 0; reg[F_TEST_WB2_DATA_WIDTH - 1:0] f_read_data_2, f_read_data_2_q; reg f_o_wb2_ack_q = 0; //registered o_wb2_ack (*keep*) reg[LANES-1:0] f_delay_ld = 0; //accept request always @* begin if(f_empty_2 && (i_wb2_cyc && SECOND_WISHBONE)) begin assert(!wb2_stb && !o_wb2_ack); end if(!wb2_stb && !o_wb2_ack) begin assert(f_empty_2); end f_write_data_2 = 0; f_write_fifo_2 = 0; if(i_wb2_stb && !o_wb2_stall && (i_wb2_cyc && SECOND_WISHBONE)) begin //if there is request if(i_wb2_we) begin //write request f_write_data_2 = {i_wb2_sel, i_wb2_data[4:0], i_wb2_data[5 +: lanes_clog2], i_wb2_addr[3:0], i_wb2_we}; //CNTVALUEIN + LANE_NUMBER + MEMORY_MAPPED_ADDRESS + REQUEST_TYPE assume(i_wb2_data[5 +: lanes_clog2] < LANES); end else begin //read request f_write_data_2 = {i_wb2_addr[4 +: lanes_clog2], i_wb2_addr[3:0], i_wb2_we}; //LANE_NUMBER + MEMORY_MAPPED_ADDRESS + REQUEST_TYPE assume(i_wb2_addr[4 +: lanes_clog2] < LANES); end f_write_fifo_2 = 1; end if(state_calibrate != DONE_CALIBRATE && i_wb2_stb) begin // must not be a read/write to delays when not yet done calibrating assume(i_wb2_addr[3:0] > 3); end end //verify outcome of request always @(posedge i_controller_clk) begin if(sync_rst_controller) begin f_o_wb2_ack_q <= 0; f_read_data_2_q <= 0; end else begin f_o_wb2_ack_q <= o_wb2_ack && f_read_data_2[0] && (i_wb2_cyc && SECOND_WISHBONE); f_read_data_2_q <= f_read_data_2; end end always @* begin if(!past_sync_rst_controller) begin if(wb2_stb && o_wb2_ack) begin assert(f_full_2 || !(i_wb2_cyc && SECOND_WISHBONE)); end if(f_full_2) begin assert(wb2_stb && o_wb2_ack); assert(f_outstanding_2 == 2 || !(i_wb2_cyc && SECOND_WISHBONE)); end if(f_outstanding_2 == 2) begin assert(f_full_2 || !(i_wb2_cyc && SECOND_WISHBONE)); end if(f_empty_2) begin assert(f_outstanding_2 == 0 || !(i_wb2_cyc && SECOND_WISHBONE)); end if(f_outstanding_2 == 0) begin assert(f_empty_2 || !(i_wb2_cyc && SECOND_WISHBONE)); end end assert(f_outstanding_2 <= 2); f_read_fifo_2 = 0; if(o_wb2_ack && !f_read_data_2[0] && !past_sync_rst_controller) begin //read request f_read_fifo_2 = 1; end if(o_wb2_ack && f_read_data_2[0] && !past_sync_rst_controller) begin f_read_fifo_2 = 1; end end //check request action at wb_ack always @(posedge i_controller_clk) begin if(f_past_valid) begin assert(!o_wb2_stall || !i_rst_n || !$past(i_rst_n)); //never stall //write request if(f_o_wb2_ack_q && i_rst_n && (&f_read_data_2_q[5 + lanes_clog2 + 4 + 1 +: $rtoi($ceil( (lanes_clog2 + 5)/8.0 ))])) begin //the sel bits must be high case(f_read_data_2_q[4:1]) //memory-mapped address 0: begin assert(o_phy_odelay_data_ld == (1 << f_read_data_2_q[5 +: lanes_clog2])); //the phy lane to be loaded must be high assert(o_phy_odelay_data_cntvaluein == f_read_data_2_q[(5 + lanes_clog2) +: 5]); //the phy interface for cntvalue must already be updated assert($past(wb2_update)); end 1: begin assert(o_phy_odelay_dqs_ld == (1 << f_read_data_2_q[5 +: lanes_clog2])); //the phy lane to be loaded must be high assert(o_phy_odelay_dqs_cntvaluein == f_read_data_2_q[(5 + lanes_clog2) +: 5]); //the phy interface for cntvalue must already be updated assert($past(wb2_update)); end 2: begin assert(o_phy_idelay_data_ld == (1 << f_read_data_2_q[5 +: lanes_clog2])); //the phy lane to be loaded must be high assert(o_phy_idelay_data_cntvaluein == f_read_data_2_q[(5 + lanes_clog2) +: 5]); //the phy interface for cntvalue must already be updated assert($past(wb2_update)); end 3: begin assert(o_phy_idelay_dqs_ld == (1 << f_read_data_2_q[5 +: lanes_clog2])); //the phy lane to be loaded must be high assert(o_phy_idelay_dqs_cntvaluein == f_read_data_2_q[(5 + lanes_clog2) +: 5]); //the phy interface for cntvalue must already be updated assert($past(wb2_update)); end endcase end else if(i_rst_n) begin assert(!$past(wb2_update) || !$past((i_wb2_cyc && SECOND_WISHBONE))); end //read request if(o_wb2_ack && !f_read_data_2[0] && i_rst_n && (i_wb2_cyc && SECOND_WISHBONE) && !(f_o_wb2_ack_q && f_read_data_2_q[1 +: (4 + lanes_clog2)] == f_read_data_2[1 +: (4 + lanes_clog2)] )) begin case(f_read_data_2[4:1]) //memory-mapped address 0: begin assert(o_wb2_data == odelay_data_cntvaluein[f_read_data_2[5 +: lanes_clog2]]); //the stored delay must match the wb2 output end 1: begin assert(o_wb2_data == odelay_dqs_cntvaluein[f_read_data_2[5 +: lanes_clog2]]); //the stored delay must match the wb2 output end 2: begin assert(o_wb2_data == idelay_data_cntvaluein[f_read_data_2[5 +: lanes_clog2]]); //the stored delay must match the wb2 output end 3: begin assert(o_wb2_data == idelay_dqs_cntvaluein[f_read_data_2[5 +: lanes_clog2]]); //the stored delay must match the wb2 output end 4: begin assert(o_wb2_data[0] == $past(i_phy_idelayctrl_rdy)); assert(o_wb2_data[5:1] == $past(state_calibrate)); assert(o_wb2_data[10:6] == $past(instruction_address)); assert(o_wb2_data[14:11] == $past(added_read_pipe_max)); end 5: begin for(f_index_1 = 0; f_index_1 < LANES; f_index_1 = f_index_1 + 1) begin assert(o_wb2_data[4*f_index_1 +: 4] == $past(added_read_pipe[f_index_1])); end end 6: begin assert(o_wb2_data == $past(dqs_store[31:0])); end 7: begin for(f_index_1 = 0; 8*f_index_1 < 32 && f_index_1 < LANES; f_index_1 = f_index_1 + 1) begin assert(o_wb2_data[8*f_index_1 +: 8] == $past(i_phy_iserdes_bitslip_reference[8*f_index_1 +: 8])); end end 8: begin assert(o_wb2_data == $past(read_data_store[31:0])); end 9: begin assert(o_wb2_data == $past(write_pattern[31:0])); end endcase end end end wire[2:0] f_read_data_2_lane; assign f_read_data_2_lane = f_read_data_2[5 +: lanes_clog2]; always @(posedge i_controller_clk) begin if(f_past_valid) begin for(f_index_1 = 0; f_index_1 < LANES; f_index_1 = f_index_1 + 1) begin if(o_phy_bitslip[f_index_1]) begin //Bitslip cannot be asserted for two consecutive CLKDIV cycles; Bitslip must be //deasserted for at least one CLKDIV cycle between two Bitslip assertions. assert(!$past(o_phy_bitslip[f_index_1])); end end end end mini_fifo #( .FIFO_WIDTH(1), //the fifo will have 2**FIFO_WIDTH positions .DATA_WIDTH(F_TEST_WB2_DATA_WIDTH) //each FIFO position can store DATA_WIDTH bits ) fifo_2 ( .i_clk(i_controller_clk), .i_rst_n(i_rst_n && (i_wb2_cyc && SECOND_WISHBONE)), //reset outstanding request at reset or when cyc goes low .read_fifo(f_read_fifo_2), .write_fifo(f_write_fifo_2), .empty(f_empty_2), .full(f_full_2), .write_data(f_write_data_2), .read_data(f_read_data_2) ); */ //assumption on when to do request (so as not to violate the //F_MAX_STALL property of fwb_slave) always @* begin if(!(state_calibrate == DONE_CALIBRATE && instruction_address == 22)) begin //if in initialization/refresh sequence, no request should come in to the controller wishbone assume(!i_wb_stb); end end fwb_slave #( // {{{ .AW(wb_addr_bits), .DW(wb_data_bits), .F_MAX_STALL(F_MAX_STALL), .F_MAX_ACK_DELAY(F_MAX_ACK_DELAY), .F_LGDEPTH(4), .F_MAX_REQUESTS(10), // OPT_BUS_ABORT: If true, the master can drop CYC at any time // and must drop CYC following any bus error .OPT_BUS_ABORT(1), // // If true, allow the bus to be kept open when there are no // outstanding requests. This is useful for any master that // might execute a read modify write cycle, such as an atomic // add. .F_OPT_RMW_BUS_OPTION(1), // // // If true, allow the bus to issue multiple discontinuous // requests. // Unlike F_OPT_RMW_BUS_OPTION, these requests may be issued // while other requests are outstanding .F_OPT_DISCONTINUOUS(1), // // // If true, insist that there be a minimum of a single clock // delay between request and response. This defaults to off // since the wishbone specification specifically doesn't // require this. However, some interfaces do, so we allow it // as an option here. .F_OPT_MINCLOCK_DELAY(1), // }}} ) wb_properties ( // {{{ .i_clk(i_controller_clk), .i_reset(past_sync_rst_controller), // The Wishbone bus .i_wb_cyc(i_wb_cyc), .i_wb_stb(i_wb_stb), .i_wb_we(i_wb_we), .i_wb_addr(i_wb_addr), .i_wb_data(i_wb_data), .i_wb_sel(i_wb_sel), // .i_wb_ack(o_wb_ack), .i_wb_stall(o_wb_stall), .i_wb_idata(o_wb_data), .i_wb_err(o_wb_err), // Some convenience output parameters .f_nreqs(f_nreqs), .f_nacks(f_nacks), .f_outstanding(f_outstanding), .f_ackwait_count(f_ackwait_count), .f_stall_count(f_stall_count) // }}} // }}} ); /* fwb_slave #( // {{{ .AW(WB2_ADDR_BITS), .DW(WB2_DATA_BITS), .F_MAX_STALL(2), .F_MAX_ACK_DELAY(2), .F_LGDEPTH(4), .F_MAX_REQUESTS(10), // OPT_BUS_ABORT: If true, the master can drop CYC at any time // and must drop CYC following any bus error .OPT_BUS_ABORT(1), // // If true, allow the bus to be kept open when there are no // outstanding requests. This is useful for any master that // might execute a read modify write cycle, such as an atomic // add. .F_OPT_RMW_BUS_OPTION(1), // // // If true, allow the bus to issue multiple discontinuous // requests. // Unlike F_OPT_RMW_BUS_OPTION, these requests may be issued // while other requests are outstanding .F_OPT_DISCONTINUOUS(1), // // // If true, insist that there be a minimum of a single clock // delay between request and response. This defaults to off // since the wishbone specification specifically doesn't // require this. However, some interfaces do, so we allow it // as an option here. .F_OPT_MINCLOCK_DELAY(1), // }}} ) wb2_properties ( // {{{ .i_clk(i_controller_clk), .i_reset(!i_rst_n), // The Wishbone bus .i_wb_cyc((i_wb2_cyc && SECOND_WISHBONE)), .i_wb_stb(i_wb2_stb), .i_wb_we(i_wb2_we), .i_wb_addr(i_wb2_addr), .i_wb_data(i_wb2_data), .i_wb_sel(i_wb2_sel), // .i_wb_ack(o_wb2_ack), .i_wb_stall(o_wb2_stall), .i_wb_idata(o_wb2_data), .i_wb_err(1'b0), // Some convenience output parameters .f_nreqs(f_nreqs_2), .f_nacks(f_nacks_2), .f_outstanding(f_outstanding_2), // }}} // }}} );*/ `endif //endif for TEST_CONTROLLER_PIPELINE `endif //endif for FORMAL endmodule `ifdef FORMAL //FiFO with only 2 elements for verifying the contents of the controller //2-stage pipeline module mini_fifo #( parameter FIFO_WIDTH = 1, //the fifo will have 2**FIFO_WIDTH positions parameter DATA_WIDTH = 8 //each FIFO position can store DATA_WIDTH bits )( input wire i_clk, i_rst_n, input wire read_fifo, write_fifo, output reg empty, full, input wire[DATA_WIDTH - 1:0] write_data, output wire[DATA_WIDTH - 1:0] read_data, output wire[DATA_WIDTH - 1:0] read_data_next ); reg[FIFO_WIDTH-1:0] write_pointer=0, read_pointer=0; reg[DATA_WIDTH - 1:0] fifo_reg[2**FIFO_WIDTH-1:0]; initial begin empty = 1; full = 0; end always @(posedge i_clk) begin if(!i_rst_n) begin empty <= 1; full <=0; read_pointer <= 0; write_pointer <= 0; end else begin if(read_fifo) begin `ifdef FORMAL assert(!empty); `endif if(!write_fifo) full <= 0; //advance read pointer read_pointer <= read_pointer + 1; if(read_pointer + 1'b1 == write_pointer && !write_fifo) empty <= 1; end if(write_fifo) begin `ifdef FORMAL if(!read_fifo) assert(!full); `endif if(!read_fifo) empty <= 0; //write to FiFo fifo_reg[write_pointer] <= write_data; //advance read pointer write_pointer <= write_pointer + 1; if(write_pointer + 1'b1 == read_pointer && !read_fifo) full <= 1'b1; //fifo should never be full end end end assign read_data = fifo_reg[read_pointer]; assign read_data_next = fifo_reg[!read_pointer]; //data after current pointer `ifdef FORMAL //mini-FiFo assertions always @* begin if(empty || full) begin assert(write_pointer == read_pointer); end if(write_pointer == read_pointer) begin assert(empty || full); end assert(!(empty && full)); //TASK ADD MORE ASSERTIONS end `endif endmodule `endif