// OpenSTA, Static Timing Analyzer
// Copyright (c) 2019, Parallax Software, Inc.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
#include "StaConfig.hh"
#include // sqrt
#include "Machine.hh"
#include "Error.hh"
#include "StringUtil.hh"
#include "Fuzzy.hh"
#include "Units.hh"
#include "StaState.hh"
#include "Delay.hh"
// SSTA compilation.
#if (SSTA == 2)
namespace sta {
inline float
square(float x)
{
return x * x;
}
static Delay delay_init_values[MinMax::index_count];
void
initDelayConstants()
{
delay_init_values[MinMax::minIndex()] = MinMax::min()->initValue();
delay_init_values[MinMax::maxIndex()] = MinMax::max()->initValue();
}
const Delay &
delayInitValue(const MinMax *min_max)
{
return delay_init_values[min_max->index()];
}
Delay::Delay() :
mean_(0.0),
sigma2_{0.0, 0.0}
{
}
Delay::Delay(float mean) :
mean_(mean),
sigma2_{0.0, 0.0}
{
}
Delay::Delay(float mean,
float sigma2_early,
float sigma2_late) :
mean_(mean),
sigma2_{sigma2_early, sigma2_late}
{
}
float
Delay::sigma(const EarlyLate *early_late) const
{
float sigma = sigma2_[early_late->index()];
if (sigma < 0.0)
// Sigma is negative for crpr to offset sigmas in the common
// clock path.
return -sqrt(-sigma);
else
return sqrt(sigma);
}
float
Delay::sigma2(const EarlyLate *early_late) const
{
return sigma2_[early_late->index()];
}
float
Delay::sigma2Early() const
{
return sigma2_[early_index];
}
float
Delay::sigma2Late() const
{
return sigma2_[late_index];
}
void
Delay::operator=(const Delay &delay)
{
mean_ = delay.mean_;
sigma2_[early_index] = delay.sigma2_[early_index];
sigma2_[late_index] = delay.sigma2_[late_index];
}
void
Delay::operator=(float delay)
{
mean_ = delay;
sigma2_[early_index] = 0.0;
sigma2_[late_index] = 0.0;
}
void
Delay::operator+=(const Delay &delay)
{
mean_ += delay.mean_;
sigma2_[early_index] += delay.sigma2_[early_index];
sigma2_[late_index] += delay.sigma2_[late_index];
}
void
Delay::operator+=(float delay)
{
mean_ += delay;
}
Delay
Delay::operator+(const Delay &delay) const
{
return Delay(mean_ + delay.mean_,
sigma2_[early_index] + delay.sigma2_[early_index],
sigma2_[late_index] + delay.sigma2_[late_index]);
}
Delay
Delay::operator+(float delay) const
{
return Delay(mean_ + delay, sigma2_[early_index], sigma2_[late_index]);
}
Delay
Delay::operator-(const Delay &delay) const
{
return Delay(mean_ - delay.mean_,
sigma2_[early_index] + delay.sigma2_[late_index],
sigma2_[late_index] + delay.sigma2_[early_index]);
}
Delay
Delay::operator-(float delay) const
{
return Delay(mean_ - delay, sigma2_[early_index], sigma2_[late_index]);
}
Delay
Delay::operator-() const
{
return Delay(-mean_, sigma2_[late_index], sigma2_[early_index]);
}
void
Delay::operator-=(float delay)
{
mean_ -= delay;
}
void
Delay::operator-=(const Delay &delay)
{
mean_ -= delay.mean_;
sigma2_[early_index] += delay.sigma2_[early_index];
sigma2_[late_index] += delay.sigma2_[late_index];
}
bool
Delay::operator==(const Delay &delay) const
{
return mean_ == delay.mean_
&& sigma2_[early_index] == delay.sigma2_[late_index]
&& sigma2_[late_index] == delay.sigma2_[early_index];
}
bool
Delay::operator>(const Delay &delay) const
{
return mean_ > delay.mean_;
}
bool
Delay::operator>=(const Delay &delay) const
{
return mean_ >= delay.mean_;
}
bool
Delay::operator<(const Delay &delay) const
{
return mean_ < delay.mean_;
}
bool
Delay::operator<=(const Delay &delay) const
{
return mean_ <= delay.mean_;
}
////////////////////////////////////////////////////////////////
Delay
makeDelay(float delay,
float sigma_early,
float sigma_late)
{
return Delay(delay, square(sigma_early), square(sigma_late));
}
Delay
makeDelay2(float delay,
float sigma2_early,
float sigma2_late)
{
return Delay(delay, sigma2_early, sigma2_late);
}
bool
delayIsInitValue(const Delay &delay,
const MinMax *min_max)
{
return fuzzyEqual(delay.mean(), min_max->initValue())
&& delay.sigma2Early() == 0.0
&& delay.sigma2Late() == 0.0;
}
bool
fuzzyZero(const Delay &delay)
{
return fuzzyZero(delay.mean())
&& fuzzyZero(delay.sigma2Early())
&& fuzzyZero(delay.sigma2Late());
}
bool
fuzzyEqual(const Delay &delay1,
const Delay &delay2)
{
return fuzzyEqual(delay1.mean(), delay2.mean())
&& fuzzyEqual(delay1.sigma2Early(), delay2.sigma2Early())
&& fuzzyEqual(delay1.sigma2Late(), delay2.sigma2Late());
}
bool
fuzzyLess(const Delay &delay1,
const Delay &delay2)
{
return fuzzyLess(delay1.mean(), delay2.mean());
}
bool
fuzzyLess(const Delay &delay1,
float delay2)
{
return fuzzyLess(delay1.mean(), delay2);
}
bool
fuzzyLessEqual(const Delay &delay1,
const Delay &delay2)
{
return fuzzyLessEqual(delay1.mean(), delay2.mean());
}
bool
fuzzyLessEqual(const Delay &delay1,
float delay2)
{
return fuzzyLessEqual(delay1.mean(), delay2);
}
bool
fuzzyLessEqual(const Delay &delay1,
const Delay &delay2,
const MinMax *min_max)
{
if (min_max == MinMax::max())
return fuzzyLessEqual(delay1.mean(), delay2.mean());
else
return fuzzyGreaterEqual(delay1.mean(), delay2.mean());
}
bool
fuzzyGreater(const Delay &delay1,
const Delay &delay2)
{
return fuzzyGreater(delay1.mean(), delay2.mean());
}
bool
fuzzyGreater(const Delay &delay1,
float delay2)
{
return fuzzyGreater(delay1.mean(), delay2);
}
bool
fuzzyGreaterEqual(const Delay &delay1,
const Delay &delay2)
{
return fuzzyGreaterEqual(delay1.mean(), delay2.mean());
}
bool
fuzzyGreaterEqual(const Delay &delay1,
float delay2)
{
return fuzzyGreaterEqual(delay1.mean(), delay2);
}
bool
fuzzyGreater(const Delay &delay1,
const Delay &delay2,
const MinMax *min_max)
{
if (min_max == MinMax::max())
return fuzzyGreater(delay1.mean(), delay2.mean());
else
return fuzzyLess(delay1.mean(), delay2.mean());
}
bool
fuzzyGreaterEqual(const Delay &delay1,
const Delay &delay2,
const MinMax *min_max)
{
if (min_max == MinMax::max())
return fuzzyGreaterEqual(delay1.mean(), delay2.mean());
else
return fuzzyLessEqual(delay1.mean(), delay2.mean());
}
bool
fuzzyLess(const Delay &delay1,
const Delay &delay2,
const MinMax *min_max)
{
if (min_max == MinMax::max())
return fuzzyLess(delay1.mean(), delay2.mean());
else
return fuzzyGreater(delay1.mean(), delay2.mean());
}
Delay
operator+(float delay1,
const Delay &delay2)
{
return Delay(delay1 + delay2.mean(),
delay2.sigma2Early(),
delay2.sigma2Late());
}
Delay
operator/(float delay1,
const Delay &delay2)
{
return Delay(delay1 / delay2.mean(),
delay2.sigma2Early(),
delay2.sigma2Late());
}
Delay
operator*(const Delay &delay1,
float delay2)
{
return Delay(delay1.mean() * delay2,
delay1.sigma2Early() * delay2 * delay2,
delay1.sigma2Late() * delay2 * delay2);
}
float
delayRatio(const Delay &delay1,
const Delay &delay2)
{
return delay1.mean() / delay2.mean();
}
float
delayAsFloat(const Delay &delay,
const EarlyLate *early_late,
const StaState *sta)
{
if (sta->pocvEnabled()) {
if (early_late == EarlyLate::early())
return delay.mean() - delay.sigma(early_late) * sta->sigmaFactor();
else if (early_late == EarlyLate::late())
return delay.mean() + delay.sigma(early_late) * sta->sigmaFactor();
else
internalError("unknown early/late value.");
}
else
return delay.mean();
}
float
delaySigma2(const Delay &delay,
const EarlyLate *early_late)
{
return delay.sigma2(early_late);
}
const char *
delayAsString(const Delay &delay,
const StaState *sta)
{
return delayAsString(delay, sta, sta->units()->timeUnit()->digits());
}
const char *
delayAsString(const Delay &delay,
const StaState *sta,
int digits)
{
const Unit *unit = sta->units()->timeUnit();
if (sta->pocvEnabled()) {
float sigma_early = delay.sigma(EarlyLate::early());
float sigma_late = delay.sigma(EarlyLate::late());
return stringPrintTmp("%s[%s : %s]",
unit->asString(delay.mean(), digits),
unit->asString(sigma_early, digits),
unit->asString(sigma_late, digits));
}
else
return unit->asString(delay.mean(), digits);
}
const char *
delayAsString(const Delay &delay,
const EarlyLate *early_late,
const StaState *sta,
int digits)
{
float mean_sigma = delayAsFloat(delay, early_late, sta);
return sta->units()->timeUnit()->asString(mean_sigma, digits);
}
} // namespace
#endif