// OpenSTA, Static Timing Analyzer
// Copyright (c) 2020, Parallax Software, Inc.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see .
#include "CheckSlewLimits.hh"
#include "Fuzzy.hh"
#include "Liberty.hh"
#include "Network.hh"
#include "Sdc.hh"
#include "Graph.hh"
#include "DcalcAnalysisPt.hh"
#include "GraphDelayCalc.hh"
#include "StaState.hh"
#include "Corner.hh"
#include "PathVertex.hh"
#include "PortDirection.hh"
#include "Search.hh"
#include "ClkNetwork.hh"
namespace sta {
class PinSlewLimitSlackLess
{
public:
PinSlewLimitSlackLess(const Corner *corner,
const MinMax *min_max,
CheckSlewLimits *check_slew_limit,
const StaState *sta);
bool operator()(Pin *pin1,
Pin *pin2) const;
private:
const Corner *corner_;
const MinMax *min_max_;
CheckSlewLimits *check_slew_limit_;
const StaState *sta_;
};
PinSlewLimitSlackLess::PinSlewLimitSlackLess(const Corner *corner,
const MinMax *min_max,
CheckSlewLimits *check_slew_limit,
const StaState *sta) :
corner_(corner),
min_max_(min_max),
check_slew_limit_(check_slew_limit),
sta_(sta)
{
}
bool
PinSlewLimitSlackLess::operator()(Pin *pin1,
Pin *pin2) const
{
const Corner *corner1, *corner2;
const RiseFall *rf1, *rf2;
Slew slew1, slew2;
float limit1, limit2, slack1, slack2;
check_slew_limit_->checkSlew(pin1, corner_, min_max_, true,
corner1, rf1, slew1, limit1, slack1);
check_slew_limit_->checkSlew(pin2, corner_, min_max_, true,
corner2, rf2, slew2, limit2, slack2);
return fuzzyLess(slack1, slack2)
|| (fuzzyEqual(slack1, slack2)
// Break ties for the sake of regression stability.
&& sta_->network()->pinLess(pin1, pin2));
}
////////////////////////////////////////////////////////////////
CheckSlewLimits::CheckSlewLimits(const StaState *sta) :
sta_(sta)
{
}
void
CheckSlewLimits::checkSlew(const Pin *pin,
const Corner *corner,
const MinMax *min_max,
bool check_clks,
// Return values.
const Corner *&corner1,
const RiseFall *&rf,
Slew &slew,
float &limit,
float &slack) const
{
corner1 = nullptr;
rf = nullptr;
slew = 0.0;
limit = 0.0;
slack = MinMax::min()->initValue();
if (corner)
checkSlews1(pin, corner, min_max, check_clks,
corner1, rf, slew, limit, slack);
else {
for (auto corner : *sta_->corners()) {
checkSlews1(pin, corner, min_max, check_clks,
corner1, rf, slew, limit, slack);
}
}
}
void
CheckSlewLimits::checkSlews1(const Pin *pin,
const Corner *corner,
const MinMax *min_max,
bool check_clks,
// Return values.
const Corner *&corner1,
const RiseFall *&rf,
Slew &slew,
float &limit,
float &slack) const
{
Vertex *vertex, *bidirect_drvr_vertex;
sta_->graph()->pinVertices(pin, vertex, bidirect_drvr_vertex);
if (vertex)
checkSlews1(vertex, corner, min_max, check_clks,
corner1, rf, slew, limit, slack);
if (bidirect_drvr_vertex)
checkSlews1(bidirect_drvr_vertex, corner, min_max, check_clks,
corner1, rf, slew, limit, slack);
}
void
CheckSlewLimits::checkSlews1(Vertex *vertex,
const Corner *corner1,
const MinMax *min_max,
bool check_clks,
// Return values.
const Corner *&corner,
const RiseFall *&rf,
Slew &slew,
float &limit,
float &slack) const
{
const Pin *pin = vertex->pin();
if (!vertex->isDisabledConstraint()
&& !vertex->isConstant()
&& !sta_->clkNetwork()->isIdealClock(pin)) {
for (auto rf1 : RiseFall::range()) {
float limit1;
bool limit1_exists;
findLimit(pin, vertex, rf1, min_max, check_clks,
limit1, limit1_exists);
if (limit1_exists) {
checkSlew(vertex, corner1, rf1, min_max, limit1,
corner, rf, slew, slack, limit);
}
}
}
}
// return the tightest limit.
void
CheckSlewLimits::findLimit(const Pin *pin,
const Vertex *vertex,
const RiseFall *rf,
const MinMax *min_max,
bool check_clks,
// Return values.
float &limit,
bool &exists) const
{
exists = false;
const Network *network = sta_->network();
Sdc *sdc = sta_->sdc();
// Default to top ("design") limit.
Cell *top_cell = network->cell(network->topInstance());
sdc->slewLimit(top_cell, min_max,
limit, exists);
float limit1;
bool exists1;
if (check_clks) {
// Look for clock slew limits.
bool is_clk = sta_->clkNetwork()->isIdealClock(pin);
ClockSet clks;
clockDomains(vertex, clks);
ClockSet::Iterator clk_iter(clks);
while (clk_iter.hasNext()) {
Clock *clk = clk_iter.next();
PathClkOrData clk_data = is_clk ? PathClkOrData::clk : PathClkOrData::data;
sdc->slewLimit(clk, rf, clk_data, min_max,
limit1, exists1);
if (exists1
&& (!exists
|| min_max->compare(limit, limit1))) {
limit = limit1;
exists = true;
}
}
}
if (network->isTopLevelPort(pin)) {
Port *port = network->port(pin);
sdc->slewLimit(port, min_max, limit1, exists1);
if (exists1
&& (!exists
|| min_max->compare(limit, limit1))) {
limit = limit1;
exists = true;
}
}
else {
LibertyPort *port = network->libertyPort(pin);
if (port) {
port->slewLimit(min_max, limit1, exists1);
if (!exists1
&& port->direction()->isAnyOutput()
&& min_max == MinMax::max())
port->libertyLibrary()->defaultMaxSlew(limit1, exists1);
if (exists1
&& (!exists
|| min_max->compare(limit, limit1))) {
limit = limit1;
exists = true;
}
}
}
}
void
CheckSlewLimits::clockDomains(const Vertex *vertex,
// Return value.
ClockSet &clks) const
{
VertexPathIterator path_iter(const_cast(vertex), sta_);
while (path_iter.hasNext()) {
Path *path = path_iter.next();
Clock *clk = path->clock(sta_);
if (clk)
clks.insert(clk);
}
}
void
CheckSlewLimits::checkSlew(Vertex *vertex,
const Corner *corner1,
const RiseFall *rf1,
const MinMax *min_max,
float limit1,
// Return values.
const Corner *&corner,
const RiseFall *&rf,
Slew &slew,
float &slack,
float &limit) const
{
const DcalcAnalysisPt *dcalc_ap = corner1->findDcalcAnalysisPt(min_max);
Slew slew1 = sta_->graph()->slew(vertex, rf1, dcalc_ap->index());
float slew2 = delayAsFloat(slew1);
float slack1 = (min_max == MinMax::max())
? limit1 - slew2 : slew2 - limit1;
if (corner == nullptr
|| (slack1 < slack
// Break ties for the sake of regression stability.
|| (fuzzyEqual(slack1, slack)
&& rf1->index() < rf->index()))) {
corner = corner1;
rf = rf1;
slew = slew1;
slack = slack1;
limit = limit1;
}
}
PinSeq *
CheckSlewLimits::pinSlewLimitViolations(const Corner *corner,
const MinMax *min_max)
{
const Network *network = sta_->network();
PinSeq *violators = new PinSeq;
LeafInstanceIterator *inst_iter = network->leafInstanceIterator();
while (inst_iter->hasNext()) {
Instance *inst = inst_iter->next();
pinSlewLimitViolations(inst, corner, min_max, violators);
}
delete inst_iter;
// Check top level ports.
pinSlewLimitViolations(network->topInstance(), corner, min_max, violators);
sort(violators, PinSlewLimitSlackLess(corner, min_max, this, sta_));
return violators;
}
void
CheckSlewLimits::pinSlewLimitViolations(Instance *inst,
const Corner *corner,
const MinMax *min_max,
PinSeq *violators)
{
const Network *network = sta_->network();
InstancePinIterator *pin_iter = network->pinIterator(inst);
while (pin_iter->hasNext()) {
Pin *pin = pin_iter->next();
const Corner *corner1;
const RiseFall *rf;
Slew slew;
float limit, slack;
checkSlew(pin, corner, min_max, true, corner1, rf, slew, limit, slack);
if (rf && slack < 0.0 && !fuzzyInf(slack))
violators->push_back(pin);
}
delete pin_iter;
}
Pin *
CheckSlewLimits::pinMinSlewLimitSlack(const Corner *corner,
const MinMax *min_max)
{
const Network *network = sta_->network();
Pin *min_slack_pin = nullptr;
float min_slack = MinMax::min()->initValue();
LeafInstanceIterator *inst_iter = network->leafInstanceIterator();
while (inst_iter->hasNext()) {
Instance *inst = inst_iter->next();
pinMinSlewLimitSlack(inst, corner, min_max, min_slack_pin, min_slack);
}
delete inst_iter;
// Check top level ports.
pinMinSlewLimitSlack(network->topInstance(), corner, min_max,
min_slack_pin, min_slack);
return min_slack_pin;
}
void
CheckSlewLimits::pinMinSlewLimitSlack(Instance *inst,
const Corner *corner,
const MinMax *min_max,
// Return values.
Pin *&min_slack_pin,
float &min_slack)
{
const Network *network = sta_->network();
InstancePinIterator *pin_iter = network->pinIterator(inst);
while (pin_iter->hasNext()) {
Pin *pin = pin_iter->next();
const Corner *corner1;
const RiseFall *rf;
Slew slew;
float limit, slack;
checkSlew(pin, corner, min_max, true, corner1, rf, slew, limit, slack);
if (rf
&& (min_slack_pin == nullptr
|| slack < min_slack)) {
min_slack_pin = pin;
min_slack = slack;
}
}
delete pin_iter;
}
} // namespace