// OpenSTA, Static Timing Analyzer // Copyright (c) 2019, Parallax Software, Inc. // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . #include // abs #include #include "Machine.hh" #include "Debug.hh" #include "Vector.hh" #include "Network.hh" #include "Graph.hh" #include "Sdc.hh" #include "PathVertex.hh" #include "PathVertexRep.hh" #include "Path.hh" #include "PathAnalysisPt.hh" #include "ClkInfo.hh" #include "Tag.hh" #include "TagGroup.hh" #include "VisitPathEnds.hh" #include "PathEnd.hh" #include "Search.hh" #include "Genclks.hh" #include "Crpr.hh" namespace sta { using std::min; using std::abs; CheckCrpr::CheckCrpr(StaState *sta) : StaState(sta) { } PathVertex * CheckCrpr::clkPathPrev(const PathVertex *path, PathVertex &tmp) { Vertex *vertex = path->vertex(this); int arrival_index; bool exists; path->arrivalIndex(arrival_index, exists); return clkPathPrev(vertex, arrival_index, tmp); } PathVertex * CheckCrpr::clkPathPrev(Vertex *vertex, int arrival_index, PathVertex &tmp) { PathVertexRep *prevs = graph_->prevPaths(vertex); if (prevs) { PathVertexRep *prev = &prevs[arrival_index]; if (prev->isNull()) return nullptr; else { tmp.init(graph_->vertex(prev->vertexId()), search_->tag(prev->tagIndex()), this); return &tmp; } } else internalError("missing prev paths"); } //////////////////////////////////////////////////////////////// // Find the maximum possible crpr (clock min/max delta delay) for a // path from it's ClkInfo. Arrival CheckCrpr::maxCrpr(ClkInfo *clk_info) { const PathVertexRep &crpr_clk_path = clk_info->crprClkPath(); if (!crpr_clk_path.isNull()) { PathVertex crpr_clk_vpath(crpr_clk_path, this); if (!crpr_clk_vpath.isNull()) { Arrival other_arrival = otherMinMaxArrival(&crpr_clk_vpath); float crpr_diff = abs(delayAsFloat(crpr_clk_vpath.arrival(this), EarlyLate::late(), this) - delayAsFloat(other_arrival, EarlyLate::early(), this)); return crpr_diff; } } return 0.0F; } Arrival CheckCrpr::otherMinMaxArrival(const PathVertex *path) { PathAnalysisPt *other_ap = path->pathAnalysisPt(this)->tgtClkAnalysisPt(); Tag *tag = path->tag(this); VertexPathIterator other_iter(path->vertex(this), path->transition(this), other_ap, this); while (other_iter.hasNext()) { PathVertex *other = other_iter.next(); if (tagMatchCrpr(other->tag(this), tag)) return other->arrival(this); } // No corresponding path found. // Match the arrival so the difference is zero. return path->arrival(this); } Crpr CheckCrpr::checkCrpr(const Path *src_path, const PathVertex *tgt_clk_path) { Crpr crpr; Pin *crpr_pin; checkCrpr(src_path, tgt_clk_path, crpr, crpr_pin); return crpr; } void CheckCrpr::checkCrpr(const Path *src_path, const PathVertex *tgt_clk_path, // Return values. Crpr &crpr, Pin *&crpr_pin) { crpr = 0.0; crpr_pin = nullptr; if (sdc_->crprActive() && src_path && tgt_clk_path) { bool same_pin = (sdc_->crprMode() == CrprMode::same_pin); checkCrpr1(src_path, tgt_clk_path, same_pin, crpr, crpr_pin); } } void CheckCrpr::checkCrpr1(const Path *src_path, const PathVertex *tgt_clk_path, bool same_pin, // Return values. Crpr &crpr, Pin *&crpr_pin) { crpr = 0.0; crpr_pin = nullptr; ClkInfo *src_clk_info = src_path->tag(this)->clkInfo(); ClkInfo *tgt_clk_info = tgt_clk_path->tag(this)->clkInfo(); Clock *src_clk = src_clk_info->clock(); Clock *tgt_clk = tgt_clk_info->clock(); const PathVertex src_clk_path1(src_clk_info->crprClkPath(), this); const PathVertex *src_clk_path = src_clk_path1.isNull() ? nullptr : &src_clk_path1; const MinMax *src_clk_min_max = src_clk_path ? src_clk_path->minMax(this) : src_path->minMax(this); if (crprPossible(src_clk, tgt_clk) // Note that crpr clk min/max is NOT the same as the path min max. // For path from latches that are borrowing the enable path // is from the opposite min/max of the data. && src_clk_min_max != tgt_clk_path->minMax(this) && (src_clk_path != nullptr || src_clk->isGenerated())) { // Src path from input port clk path can only be from generated clk path. PathVertex port_clk_path; if (src_clk_path == nullptr) { portClkPath(src_clk_info->clkEdge(), src_clk_info->clkSrc(), src_path->pathAnalysisPt(this), port_clk_path); src_clk_path = &port_clk_path; } findCrpr(src_clk_path, tgt_clk_path, same_pin, crpr, crpr_pin); } } // Find the clk path for an input/output port. void CheckCrpr::portClkPath(const ClockEdge *clk_edge, const Pin *clk_src_pin, const PathAnalysisPt *path_ap, // Return value. PathVertex &genclk_path) { Vertex *clk_vertex = graph_->pinDrvrVertex(clk_src_pin); VertexPathIterator path_iter(clk_vertex, clk_edge->transition(), path_ap, this); while (path_iter.hasNext()) { PathVertex *path = path_iter.next(); if (path->clkEdge(this) == clk_edge && path->isClock(this)) { genclk_path = path; break; } } } void CheckCrpr::findCrpr(const PathVertex *src_clk_path, const PathVertex *tgt_clk_path, bool same_pin, // Return values. Crpr &crpr, Pin *&crpr_pin) { crpr = 0.0; crpr_pin = nullptr; const PathVertex *src_clk_path1 = src_clk_path; const PathVertex *tgt_clk_path1 = tgt_clk_path; PathVertexSeq src_gclk_paths, tgt_gclk_paths; if (src_clk_path1->clkInfo(this)->clkSrc() != tgt_clk_path1->clkInfo(this)->clkSrc()) { // Push src/tgt genclk src paths into a vector, // The last genclk src path is at index 0. genClkSrcPaths(src_clk_path1, src_gclk_paths); genClkSrcPaths(tgt_clk_path1, tgt_gclk_paths); // Search from the first gen clk toward the end // of the path to find a common root pin. int i = src_gclk_paths.size() - 1; int j = tgt_gclk_paths.size() - 1; for (; i >= 0 && j >= 0; i--, j--) { PathVertex &src_path = src_gclk_paths[i]; PathVertex &tgt_path = tgt_gclk_paths[j]; if (src_path.clkInfo(this)->clkSrc() == tgt_path.clkInfo(this)->clkSrc()) { src_clk_path1 = &src_gclk_paths[i]; tgt_clk_path1 = &tgt_gclk_paths[j]; } else break; } } const PathVertex *src_clk_path2 = src_clk_path1; const PathVertex *tgt_clk_path2 = tgt_clk_path1; PathVertex tmp1, tmp2; // src_clk_path and tgt_clk_path are now in the same (gen)clk src path. // Use the vertex levels to back up the deeper path to see if they // overlap. while (src_clk_path2 && tgt_clk_path2 && src_clk_path2->pin(this) != tgt_clk_path2->pin(this)) { Level src_level = src_clk_path2->vertex(this)->level(); Level tgt_level = tgt_clk_path2->vertex(this)->level(); if (src_level >= tgt_level) src_clk_path2 = clkPathPrev(src_clk_path2, tmp1); if (tgt_level >= src_level) tgt_clk_path2 = clkPathPrev(tgt_clk_path2, tmp2); } if (src_clk_path2 && tgt_clk_path2 && (src_clk_path2->transition(this) == tgt_clk_path2->transition(this) || same_pin)) { debugPrint1(debug_, "crpr", 2, "crpr pin %s\n", network_->pathName(src_clk_path2->pin(this))); crpr = findCrpr1(src_clk_path2, tgt_clk_path2); crpr_pin = src_clk_path2->pin(this); } } void CheckCrpr::genClkSrcPaths(const PathVertex *path, PathVertexSeq &gclk_paths) { ClkInfo *clk_info = path->clkInfo(this); ClockEdge *clk_edge = clk_info->clkEdge(); const Pin *clk_src = clk_info->clkSrc(); PathAnalysisPt *path_ap = path->pathAnalysisPt(this); gclk_paths.push_back(path); while (clk_edge->clock()->isGenerated()) { PathVertex genclk_path; search_->genclks()->srcPath(clk_edge, clk_src, path_ap, genclk_path); if (genclk_path.isNull()) break; clk_info = genclk_path.clkInfo(this); clk_src = clk_info->clkSrc(); clk_edge = clk_info->clkEdge(); gclk_paths.push_back(genclk_path); } } Crpr CheckCrpr::findCrpr1(const PathVertex *src_clk_path, const PathVertex *tgt_clk_path) { if (pocv_enabled_) { // Remove variation on the common path. // Note that the crpr sigma is negative to offset the // sigma of the common clock path. const EarlyLate *src_el = src_clk_path->minMax(this); const EarlyLate *tgt_el = tgt_clk_path->minMax(this); Arrival src_arrival = src_clk_path->arrival(this); Arrival tgt_arrival = tgt_clk_path->arrival(this); float crpr_mean = abs(delayAsFloat(src_arrival) - delayAsFloat(tgt_arrival)); float crpr_sigma2 = delaySigma2(src_arrival, src_el) + delaySigma2(tgt_arrival, tgt_el); return makeDelay2(crpr_mean, -crpr_sigma2, -crpr_sigma2); } else { // The source and target edges are different so the crpr // is the min of the source and target max-min delay. float src_delta = crprArrivalDiff(src_clk_path); float tgt_delta = crprArrivalDiff(tgt_clk_path); debugPrint1(debug_, "crpr", 2, " src delta %s\n", delayAsString(src_delta, this)); debugPrint1(debug_, "crpr", 2, " tgt delta %s\n", delayAsString(tgt_delta, this)); float common_delay = min(src_delta, tgt_delta); debugPrint2(debug_, "crpr", 2, " %s delta %s\n", network_->pathName(src_clk_path->pin(this)), delayAsString(common_delay, this)); return common_delay; } } float CheckCrpr::crprArrivalDiff(const PathVertex *path) { Arrival other_arrival = otherMinMaxArrival(path); float crpr_diff = abs(delayAsFloat(path->arrival(this)) - delayAsFloat(other_arrival)); return crpr_diff; } Crpr CheckCrpr::outputDelayCrpr(const Path *src_clk_path, const ClockEdge *tgt_clk_edge) { Crpr crpr; Pin *crpr_pin; outputDelayCrpr(src_clk_path, tgt_clk_edge, crpr, crpr_pin); return crpr; } void CheckCrpr::outputDelayCrpr(const Path *src_path, const ClockEdge *tgt_clk_edge, // Return values. Crpr &crpr, Pin *&crpr_pin) { crpr = 0.0; crpr_pin = nullptr; if (sdc_->crprActive()) { const PathAnalysisPt *path_ap = src_path->pathAnalysisPt(this); const PathAnalysisPt *tgt_path_ap = path_ap->tgtClkAnalysisPt(); bool same_pin = (sdc_->crprMode() == CrprMode::same_pin); outputDelayCrpr1(src_path,tgt_clk_edge,tgt_path_ap, same_pin, crpr, crpr_pin); } } void CheckCrpr::outputDelayCrpr1(const Path *src_path, const ClockEdge *tgt_clk_edge, const PathAnalysisPt *tgt_path_ap, bool same_pin, // Return values. Crpr &crpr, Pin *&crpr_pin) { crpr = 0.0; crpr_pin = nullptr; Clock *tgt_clk = tgt_clk_edge->clock(); Clock *src_clk = src_path->clock(this); if (tgt_clk->isGenerated() && crprPossible(src_clk, tgt_clk)) { PathVertex tgt_genclk_path; portClkPath(tgt_clk_edge, tgt_clk_edge->clock()->defaultPin(), tgt_path_ap, tgt_genclk_path); PathVertex src_clk_path(src_path->clkInfo(this)->crprClkPath(), this); if (!src_clk_path.isNull()) { findCrpr(&src_clk_path, &tgt_genclk_path, same_pin, crpr, crpr_pin); } } } bool CheckCrpr::crprPossible(Clock *clk1, Clock *clk2) { return clk1 && clk2 && !clk1->isVirtual() && !clk2->isVirtual() // Generated clock can have crpr in the source path. && (clk1 == clk2 || clk1->isGenerated() || clk2->isGenerated() // Different non-generated clocks with the same source pins (using -add). || PinSet::intersects(clk1->pins(), clk2->pins())); } } // namespace