// OpenSTA, Static Timing Analyzer // Copyright (c) 2025, Parallax Software, Inc. // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program. If not, see . // // The origin of this software must not be misrepresented; you must not // claim that you wrote the original software. // // Altered source versions must be plainly marked as such, and must not be // misrepresented as being the original software. // // This notice may not be removed or altered from any source distribution. #include "Crpr.hh" #include // abs #include #include "Debug.hh" #include "Vector.hh" #include "Network.hh" #include "Graph.hh" #include "Sdc.hh" #include "Path.hh" #include "PathAnalysisPt.hh" #include "ClkInfo.hh" #include "Tag.hh" #include "TagGroup.hh" #include "VisitPathEnds.hh" #include "PathEnd.hh" #include "Search.hh" #include "Genclks.hh" #include "Variables.hh" namespace sta { using std::min; using std::abs; CheckCrpr::CheckCrpr(StaState *sta) : StaState(sta) { } // Find the maximum possible crpr (clock min/max delta delay) for a // path from it's ClkInfo. Arrival CheckCrpr::maxCrpr(const ClkInfo *clk_info) { const Path *crpr_clk_path = clk_info->crprClkPath(this); if (crpr_clk_path) { Arrival other_arrival = otherMinMaxArrival(crpr_clk_path); float crpr_diff = abs(delayAsFloat(crpr_clk_path->arrival(), EarlyLate::late(), this) - delayAsFloat(other_arrival, EarlyLate::early(), this)); return crpr_diff; } return 0.0F; } Arrival CheckCrpr::otherMinMaxArrival(const Path *path) { PathAnalysisPt *other_ap = path->pathAnalysisPt(this)->tgtClkAnalysisPt(); Tag *tag = path->tag(this); VertexPathIterator other_iter(path->vertex(this), path->transition(this), other_ap, this); while (other_iter.hasNext()) { Path *other = other_iter.next(); if (Tag::matchCrpr(other->tag(this), tag)) return other->arrival(); } // No corresponding path found. // Match the arrival so the difference is zero. return path->arrival(); } Crpr CheckCrpr::checkCrpr(const Path *src_path, const Path *tgt_clk_path) { Crpr crpr; Pin *crpr_pin; checkCrpr(src_path, tgt_clk_path, crpr, crpr_pin); return crpr; } void CheckCrpr::checkCrpr(const Path *src_path, const Path *tgt_clk_path, // Return values. Crpr &crpr, Pin *&crpr_pin) { crpr = 0.0; crpr_pin = nullptr; if (crprActive() && src_path && tgt_clk_path) { bool same_pin = (variables_->crprMode() == CrprMode::same_pin); checkCrpr1(src_path, tgt_clk_path, same_pin, crpr, crpr_pin); } } void CheckCrpr::checkCrpr1(const Path *src_path, const Path *tgt_clk_path, bool same_pin, // Return values. Crpr &crpr, Pin *&crpr_pin) { crpr = 0.0; crpr_pin = nullptr; const Tag *src_tag = src_path->tag(this); const ClkInfo *src_clk_info = src_tag->clkInfo(); const ClkInfo *tgt_clk_info = tgt_clk_path->tag(this)->clkInfo(); const Clock *src_clk = src_clk_info->clock(); const Clock *tgt_clk = tgt_clk_info->clock(); const Path *src_clk_path = nullptr; if (src_tag->isClock()) src_clk_path = src_path; else src_clk_path = src_clk_info->crprClkPath(this); const MinMax *src_clk_min_max = src_clk_path ? src_clk_path->minMax(this) : src_path->minMax(this); if (src_clk && tgt_clk && crprPossible(src_clk, tgt_clk) && src_clk_info->isPropagated() && tgt_clk_info->isPropagated() // Note that crpr clk min/max is NOT the same as the path min max. // For path from latches that are borrowing the enable path // is from the opposite min/max of the data. && src_clk_min_max != tgt_clk_path->minMax(this) && (src_clk_path || src_clk->isGenerated())) { // Src path from input port clk path can only be from generated clk path. if (src_clk_path == nullptr) { src_clk_path = portClkPath(src_clk_info->clkEdge(), src_clk_info->clkSrc(), src_path->pathAnalysisPt(this)); } findCrpr(src_clk_path, tgt_clk_path, same_pin, crpr, crpr_pin); } } // Find the clk path for an input/output port. Path * CheckCrpr::portClkPath(const ClockEdge *clk_edge, const Pin *clk_src_pin, const PathAnalysisPt *path_ap) { Vertex *clk_vertex = graph_->pinDrvrVertex(clk_src_pin); VertexPathIterator path_iter(clk_vertex, clk_edge->transition(), path_ap, this); while (path_iter.hasNext()) { Path *path = path_iter.next(); if (path->clkEdge(this) == clk_edge && path->isClock(this)) { return path; } } return nullptr; } void CheckCrpr::findCrpr(const Path *src_clk_path, const Path *tgt_clk_path, bool same_pin, // Return values. Crpr &crpr, Pin *&crpr_pin) { crpr = 0.0; crpr_pin = nullptr; const Path *src_clk_path1 = src_clk_path; const Path *tgt_clk_path1 = tgt_clk_path; if (src_clk_path1->clkInfo(this)->clkSrc() != tgt_clk_path1->clkInfo(this)->clkSrc()) { // Push src/tgt genclk src paths into a vector, // The last genclk src path is at index 0. ConstPathSeq src_gclk_paths = genClkSrcPaths(src_clk_path1); ConstPathSeq tgt_gclk_paths = genClkSrcPaths(tgt_clk_path1); // Search from the first gen clk toward the end // of the path to find a common root pin. int i = src_gclk_paths.size() - 1; int j = tgt_gclk_paths.size() - 1; for (; i >= 0 && j >= 0; i--, j--) { const Path *src_path = src_gclk_paths[i]; const Path *tgt_path = tgt_gclk_paths[j]; if (src_path->clkInfo(this)->clkSrc() == tgt_path->clkInfo(this)->clkSrc()) { src_clk_path1 = src_gclk_paths[i]; tgt_clk_path1 = tgt_gclk_paths[j]; } else break; } } const Path *src_clk_path2 = src_clk_path1; const Path *tgt_clk_path2 = tgt_clk_path1; // src_clk_path2 and tgt_clk_path2 are now in the same (gen)clk src path. // Use the vertex levels to back up the deeper path to see if they // overlap. int src_level = src_clk_path2->vertex(this)->level(); int tgt_level = tgt_clk_path2->vertex(this)->level(); while (src_clk_path2->pin(this) != tgt_clk_path2->pin(this)) { int level_diff = src_level - tgt_level; if (level_diff >= 0) { src_clk_path2 = src_clk_path2->prevPath(); if (src_clk_path2 == nullptr || src_clk_path2->isNull()) break; src_level = src_clk_path2->vertex(this)->level(); } if (level_diff <= 0) { tgt_clk_path2 = tgt_clk_path2->prevPath(); if (tgt_clk_path2 == nullptr || tgt_clk_path2->isNull()) break; tgt_level = tgt_clk_path2->vertex(this)->level(); } } if (src_clk_path2 && !src_clk_path2->isNull() && tgt_clk_path2 && !tgt_clk_path2->isNull() && (src_clk_path2->transition(this) == tgt_clk_path2->transition(this) || same_pin)) { debugPrint(debug_, "crpr", 2, "crpr pin %s", network_->pathName(src_clk_path2->pin(this))); crpr = findCrpr1(src_clk_path2, tgt_clk_path2); crpr_pin = src_clk_path2->pin(this); } } ConstPathSeq CheckCrpr::genClkSrcPaths(const Path *path) { ConstPathSeq gclk_paths; const ClkInfo *clk_info = path->clkInfo(this); const ClockEdge *clk_edge = clk_info->clkEdge(); const Pin *clk_src = clk_info->clkSrc(); PathAnalysisPt *path_ap = path->pathAnalysisPt(this); gclk_paths.push_back(path); Genclks *genclks = search_->genclks(); while (clk_edge->clock()->isGenerated()) { const Path *genclk_path = genclks->srcPath(clk_edge, clk_src, path_ap); if (genclk_path == nullptr) break; clk_info = genclk_path->clkInfo(this); clk_src = clk_info->clkSrc(); clk_edge = clk_info->clkEdge(); gclk_paths.push_back(genclk_path); } return gclk_paths; } Crpr CheckCrpr::findCrpr1(const Path *src_clk_path, const Path *tgt_clk_path) { if (variables_->pocvEnabled()) { // Remove variation on the common path. // Note that the crpr sigma is negative to offset the // sigma of the common clock path. const EarlyLate *src_el = src_clk_path->minMax(this); const EarlyLate *tgt_el = tgt_clk_path->minMax(this); Arrival src_arrival = src_clk_path->arrival(); Arrival tgt_arrival = tgt_clk_path->arrival(); float src_clk_time = src_clk_path->clkEdge(this)->time(); float tgt_clk_time = tgt_clk_path->clkEdge(this)->time(); float crpr_mean = abs(delayAsFloat(src_arrival) - src_clk_time - (delayAsFloat(tgt_arrival) - tgt_clk_time)); // Remove the sigma from both source and target path arrivals. float crpr_sigma2 = delaySigma2(src_arrival, src_el) + delaySigma2(tgt_arrival, tgt_el); return makeDelay2(crpr_mean, -crpr_sigma2, -crpr_sigma2); } else { // The source and target edges are different so the crpr // is the min of the source and target max-min delay. float src_delta = crprArrivalDiff(src_clk_path); float tgt_delta = crprArrivalDiff(tgt_clk_path); debugPrint(debug_, "crpr", 2, " src delta %s", delayAsString(src_delta, this)); debugPrint(debug_, "crpr", 2, " tgt delta %s", delayAsString(tgt_delta, this)); float common_delay = min(src_delta, tgt_delta); debugPrint(debug_, "crpr", 2, " %s delta %s", network_->pathName(src_clk_path->pin(this)), delayAsString(common_delay, this)); return common_delay; } } float CheckCrpr::crprArrivalDiff(const Path *path) { Arrival other_arrival = otherMinMaxArrival(path); float crpr_diff = abs(delayAsFloat(path->arrival()) - delayAsFloat(other_arrival)); return crpr_diff; } Crpr CheckCrpr::outputDelayCrpr(const Path *src_clk_path, const ClockEdge *tgt_clk_edge) { Crpr crpr; Pin *crpr_pin; outputDelayCrpr(src_clk_path, tgt_clk_edge, crpr, crpr_pin); return crpr; } void CheckCrpr::outputDelayCrpr(const Path *src_path, const ClockEdge *tgt_clk_edge, // Return values. Crpr &crpr, Pin *&crpr_pin) { crpr = 0.0; crpr_pin = nullptr; if (crprActive()) { const PathAnalysisPt *path_ap = src_path->pathAnalysisPt(this); const PathAnalysisPt *tgt_path_ap = path_ap->tgtClkAnalysisPt(); bool same_pin = (variables_->crprMode() == CrprMode::same_pin); outputDelayCrpr1(src_path,tgt_clk_edge,tgt_path_ap, same_pin, crpr, crpr_pin); } } void CheckCrpr::outputDelayCrpr1(const Path *src_path, const ClockEdge *tgt_clk_edge, const PathAnalysisPt *tgt_path_ap, bool same_pin, // Return values. Crpr &crpr, Pin *&crpr_pin) { crpr = 0.0; crpr_pin = nullptr; const ClkInfo *src_clk_info = src_path->tag(this)->clkInfo(); const Clock *tgt_clk = tgt_clk_edge->clock(); const Clock *src_clk = src_path->clock(this); if (src_clk && tgt_clk && src_clk_info->isPropagated() && tgt_clk->isGenerated() && tgt_clk->isPropagated() && crprPossible(src_clk, tgt_clk)) { Path *tgt_genclk_path = portClkPath(tgt_clk_edge, tgt_clk_edge->clock()->defaultPin(), tgt_path_ap); const Path *src_clk_path = src_path->clkInfo(this)->crprClkPath(this); if (src_clk_path) findCrpr(src_clk_path, tgt_genclk_path, same_pin, crpr, crpr_pin); } } bool CheckCrpr::crprPossible(const Clock *clk1, const Clock *clk2) { return clk1 && clk2 && !clk1->isVirtual() && !clk2->isVirtual() // Generated clocks can have crpr in the source path. && (clk1 == clk2 || clk1->isGenerated() || clk2->isGenerated() // Different non-generated clocks with the same source pins (using -add). || PinSet::intersects(&clk1->pins(), &clk2->pins(), network_)); } } // namespace