OpenSTA/search/Power.cc

999 lines
25 KiB
C++
Raw Normal View History

2019-06-20 01:05:13 +02:00
// OpenSTA, Static Timing Analyzer
2019-01-01 21:26:11 +01:00
// Copyright (c) 2019, Parallax Software, Inc.
2018-11-26 18:15:52 +01:00
//
2019-06-20 01:05:13 +02:00
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
2018-11-26 18:15:52 +01:00
#include <algorithm> // max
#include "Machine.hh"
#include "Debug.hh"
2019-04-29 17:39:05 +02:00
#include "EnumNameMap.hh"
2018-11-26 18:15:52 +01:00
#include "Units.hh"
#include "Transition.hh"
#include "MinMax.hh"
2019-04-29 17:39:05 +02:00
#include "Clock.hh"
#include "TimingRole.hh"
2018-11-26 18:15:52 +01:00
#include "Liberty.hh"
#include "InternalPower.hh"
#include "LeakagePower.hh"
2019-04-29 17:39:05 +02:00
#include "Sequential.hh"
2018-11-26 18:15:52 +01:00
#include "TimingArc.hh"
#include "FuncExpr.hh"
#include "PortDirection.hh"
#include "Network.hh"
#include "Graph.hh"
#include "Corner.hh"
2019-04-29 17:39:05 +02:00
#include "Sdc.hh"
2018-11-26 18:15:52 +01:00
#include "DcalcAnalysisPt.hh"
#include "GraphDelayCalc.hh"
#include "PathVertex.hh"
2019-04-29 17:39:05 +02:00
#include "Levelize.hh"
#include "Sim.hh"
#include "Search.hh"
#include "Bfs.hh"
2018-11-26 18:15:52 +01:00
#include "Power.hh"
// Related liberty not supported:
// library
// default_cell_leakage_power : 0;
// output_voltage (default_VDD_VSS_output) {
// leakage_power
// related_pg_pin : VDD;
// internal_power
// input_voltage : default_VDD_VSS_input;
// pin
// output_voltage : default_VDD_VSS_output;
namespace sta {
static int
funcExprPortCount(FuncExpr *expr);
2019-02-18 19:56:38 +01:00
2018-11-26 18:15:52 +01:00
Power::Power(Sta *sta) :
StaState(sta),
2019-04-29 17:39:05 +02:00
global_activity_{0.0, 0.0, PwrActivityOrigin::unknown},
input_activity_{0.1, 0.5, PwrActivityOrigin::input},
activities_valid_(false)
2018-11-26 18:15:52 +01:00
{
}
2019-04-29 17:39:05 +02:00
void
Power::setGlobalActivity(float activity,
float duty)
{
global_activity_.set(activity, duty, PwrActivityOrigin::global);
activities_valid_ = false;
}
void
Power::setInputActivity(float activity,
float duty)
2018-11-26 18:15:52 +01:00
{
2019-04-29 17:39:05 +02:00
input_activity_.set(activity, duty, PwrActivityOrigin::input);
activities_valid_ = false;
2018-11-26 18:15:52 +01:00
}
void
2019-04-29 17:39:05 +02:00
Power::setInputPortActivity(const Port *input_port,
float activity,
float duty)
2018-11-26 18:15:52 +01:00
{
2019-04-29 17:39:05 +02:00
Instance *top_inst = network_->topInstance();
const Pin *pin = network_->findPin(top_inst, input_port);
if (pin) {
activity_map_[pin] = {activity, duty, PwrActivityOrigin::user};
activities_valid_ = false;
}
2018-11-26 18:15:52 +01:00
}
2019-04-29 17:39:05 +02:00
PwrActivity &
Power::pinActivity(const Pin *pin)
{
return activity_map_[pin];
}
2019-05-01 03:17:36 +02:00
bool
Power::hasPinActivity(const Pin *pin)
{
return activity_map_.hasKey(pin);
}
2019-04-29 17:39:05 +02:00
void
Power::setPinActivity(const Pin *pin,
PwrActivity &activity)
2019-04-29 17:39:05 +02:00
{
activity_map_[pin] = activity;
2019-04-29 17:39:05 +02:00
activities_valid_ = false;
}
void
Power::setPinActivity(const Pin *pin,
float activity,
float duty,
PwrActivityOrigin origin)
2019-04-29 17:39:05 +02:00
{
activity_map_[pin] = {activity, duty, origin};
2019-04-29 17:39:05 +02:00
activities_valid_ = false;
}
2018-11-26 18:15:52 +01:00
void
Power::power(const Corner *corner,
// Return values.
PowerResult &total,
PowerResult &sequential,
PowerResult &combinational,
PowerResult &macro,
PowerResult &pad)
{
total.clear();
sequential.clear();
combinational.clear();
macro.clear();
pad.clear();
2019-04-29 17:39:05 +02:00
preamble();
2018-11-26 18:15:52 +01:00
LeafInstanceIterator *inst_iter = network_->leafInstanceIterator();
while (inst_iter->hasNext()) {
Instance *inst = inst_iter->next();
LibertyCell *cell = network_->libertyCell(inst);
if (cell) {
PowerResult inst_power;
power(inst, corner, inst_power);
if (cell->isMacro())
macro.incr(inst_power);
else if (cell->isPad())
pad.incr(inst_power);
else if (cell->hasSequentials())
sequential.incr(inst_power);
else
combinational.incr(inst_power);
total.incr(inst_power);
}
}
2018-12-05 23:18:41 +01:00
delete inst_iter;
2018-11-26 18:15:52 +01:00
}
void
Power::power(const Instance *inst,
const Corner *corner,
// Return values.
PowerResult &result)
{
LibertyCell *cell = network_->libertyCell(inst);
2019-04-29 17:39:05 +02:00
if (cell) {
preamble();
2018-11-26 18:15:52 +01:00
power(inst, cell, corner, result);
2019-04-29 17:39:05 +02:00
}
}
////////////////////////////////////////////////////////////////
class ActivitySrchPred : public SearchPred
{
public:
explicit ActivitySrchPred(const StaState *sta);
virtual bool searchFrom(const Vertex *from_vertex);
virtual bool searchThru(Edge *edge);
virtual bool searchTo(const Vertex *);
protected:
const StaState *sta_;
};
ActivitySrchPred::ActivitySrchPred(const StaState *sta) :
sta_(sta)
{
}
bool
ActivitySrchPred::searchFrom(const Vertex *)
{
return true;
}
bool
ActivitySrchPred::searchThru(Edge *edge)
{
auto role = edge->role();
return !(edge->isDisabledLoop()
|| role->isTimingCheck()
|| role == TimingRole::regClkToQ());
}
bool
ActivitySrchPred::searchTo(const Vertex *)
{
return true;
}
////////////////////////////////////////////////////////////////
class PropActivityVisitor : public VertexVisitor, StaState
{
public:
PropActivityVisitor(Power *power,
BfsFwdIterator *bfs);
2019-05-01 03:17:36 +02:00
~PropActivityVisitor();
2019-04-29 17:39:05 +02:00
virtual VertexVisitor *copy();
virtual void visit(Vertex *vertex);
2019-05-01 03:17:36 +02:00
void init();
bool foundRegWithoutActivity() const;
InstanceSet *stealVisitedRegs();
2019-04-29 17:39:05 +02:00
private:
2019-05-01 03:17:36 +02:00
InstanceSet *visited_regs_;
bool found_reg_without_activity_;
2019-04-29 17:39:05 +02:00
Power *power_;
BfsFwdIterator *bfs_;
};
PropActivityVisitor::PropActivityVisitor(Power *power,
BfsFwdIterator *bfs) :
StaState(power),
2019-05-01 03:17:36 +02:00
visited_regs_(nullptr),
2019-04-29 17:39:05 +02:00
power_(power),
bfs_(bfs)
{
}
2019-05-01 03:17:36 +02:00
PropActivityVisitor::~PropActivityVisitor()
{
delete visited_regs_;
}
2019-04-29 17:39:05 +02:00
VertexVisitor *
PropActivityVisitor::copy()
{
return new PropActivityVisitor(power_, bfs_);
}
2019-05-01 03:17:36 +02:00
void
PropActivityVisitor::init()
{
visited_regs_ = new InstanceSet;
found_reg_without_activity_ = false;
}
InstanceSet *
PropActivityVisitor::stealVisitedRegs()
{
InstanceSet *visited_regs = visited_regs_;
visited_regs_ = nullptr;
return visited_regs;
}
bool
PropActivityVisitor::foundRegWithoutActivity() const
{
return found_reg_without_activity_;
}
void
PropActivityVisitor::visit(Vertex *vertex)
{
auto pin = vertex->pin();
debugPrint1(debug_, "power_activity", 3, "visit %s\n",
vertex->name(network_));
bool input_without_activity = false;
if (network_->isLoad(pin)) {
VertexInEdgeIterator edge_iter(vertex, graph_);
if (edge_iter.hasNext()) {
Edge *edge = edge_iter.next();
if (edge->isWire()) {
Vertex *from_vertex = edge->from(graph_);
const Pin *from_pin = from_vertex->pin();
PwrActivity &from_activity = power_->pinActivity(from_pin);
PwrActivity to_activity(from_activity.activity(),
from_activity.duty(),
PwrActivityOrigin::propagated);
if (!power_->hasPinActivity(pin))
input_without_activity = true;
power_->setPinActivity(pin, to_activity);
}
}
Instance *inst = network_->instance(pin);
auto cell = network_->libertyCell(inst);
if (cell && cell->hasSequentials()) {
debugPrint1(debug_, "power_activity", 3, "pending reg %s\n",
network_->pathName(inst));
visited_regs_->insert(inst);
found_reg_without_activity_ = input_without_activity;
}
}
if (network_->isDriver(pin)) {
LibertyPort *port = network_->libertyPort(pin);
if (port) {
FuncExpr *func = port->function();
Instance *inst = network_->instance(pin);
PwrActivity activity = power_->evalActivity(func, inst);
power_->setPinActivity(pin, activity);
debugPrint3(debug_, "power_activity", 3, "set %s %.2e %.2f\n",
vertex->name(network_),
activity.activity(),
activity.duty());
2019-05-01 03:17:36 +02:00
}
}
bfs_->enqueueAdjacentVertices(vertex);
}
2019-04-29 17:39:05 +02:00
PwrActivity
Power::evalActivity(FuncExpr *expr,
const Instance *inst)
{
switch (expr->op()) {
case FuncExpr::op_port: {
Pin *pin = network_->findPin(inst, expr->port()->name());
if (pin)
return findActivity(pin);
2019-06-19 16:55:04 +02:00
else
return PwrActivity(0.0, 0.0, PwrActivityOrigin::constant);
2019-04-29 17:39:05 +02:00
}
case FuncExpr::op_not: {
PwrActivity activity1 = evalActivity(expr->left(), inst);
return PwrActivity(activity1.activity(),
1.0 - activity1.duty(),
PwrActivityOrigin::propagated);
}
case FuncExpr::op_or: {
PwrActivity activity1 = evalActivity(expr->left(), inst);
PwrActivity activity2 = evalActivity(expr->right(), inst);
float p1 = 1.0 - activity1.duty();
float p2 = 1.0 - activity2.duty();
return PwrActivity(activity1.activity() * p2
+ activity2.activity() * p1,
1.0 - p1 * p2,
PwrActivityOrigin::propagated);
}
case FuncExpr::op_and: {
PwrActivity activity1 = evalActivity(expr->left(), inst);
PwrActivity activity2 = evalActivity(expr->right(), inst);
float p1 = activity1.duty();
float p2 = activity2.duty();
return PwrActivity(activity1.activity() * p2 + activity2.activity() * p1,
p1 * p2,
PwrActivityOrigin::propagated);
}
case FuncExpr::op_xor: {
PwrActivity activity1 = evalActivity(expr->left(), inst);
PwrActivity activity2 = evalActivity(expr->right(), inst);
float p1 = activity1.duty() * (1.0 - activity2.duty());
float p2 = activity2.duty() * (1.0 - activity1.duty());
return PwrActivity(activity1.activity() * p1 + activity2.activity() * p2,
p1 + p2,
PwrActivityOrigin::propagated);
}
case FuncExpr::op_one:
return PwrActivity(0.0, 1.0, PwrActivityOrigin::constant);
case FuncExpr::op_zero:
return PwrActivity(0.0, 0.0, PwrActivityOrigin::constant);
}
return PwrActivity();
}
////////////////////////////////////////////////////////////////
void
Power::preamble()
{
ensureActivities();
}
void
Power::ensureActivities()
{
if (!global_activity_.isSet()) {
if (!activities_valid_) {
ActivitySrchPred activity_srch_pred(this);
BfsFwdIterator bfs(BfsIndex::other, &activity_srch_pred, this);
seedActivities(bfs);
PropActivityVisitor visitor(this, &bfs);
2019-05-01 03:17:36 +02:00
visitor.init();
2019-04-29 17:39:05 +02:00
bfs.visit(levelize_->maxLevel(), &visitor);
2019-05-01 03:17:36 +02:00
while (visitor.foundRegWithoutActivity()) {
InstanceSet *regs = visitor.stealVisitedRegs();
InstanceSet::Iterator reg_iter(regs);
while (reg_iter.hasNext()) {
auto reg = reg_iter.next();
// Propagate activiities across register D->Q.
seedRegOutputActivities(reg, bfs);
}
2019-05-20 01:06:06 +02:00
delete regs;
2019-05-01 03:17:36 +02:00
visitor.init();
bfs.visit(levelize_->maxLevel(), &visitor);
}
2019-04-29 17:39:05 +02:00
activities_valid_ = true;
}
}
2018-11-26 18:15:52 +01:00
}
2019-04-29 17:39:05 +02:00
void
Power::seedActivities(BfsFwdIterator &bfs)
{
for (auto vertex : levelize_->roots()) {
const Pin *pin = vertex->pin();
// Clock activities are baked in.
2019-05-01 03:17:36 +02:00
if (!sdc_->isVertexPinClock(pin)
&& network_->direction(pin) != PortDirection::internal()) {
debugPrint1(debug_, "power_activity", 3, "seed %s\n",
vertex->name(network_));
PwrActivity &activity = pinActivity(pin);
PwrActivityOrigin origin = activity.origin();
// Default inputs without explicit activities to the input default.
if (origin != PwrActivityOrigin::user)
setPinActivity(pin, input_activity_);
Vertex *vertex = graph_->pinDrvrVertex(pin);
bfs.enqueueAdjacentVertices(vertex);
2019-04-29 17:39:05 +02:00
}
}
}
void
2019-05-01 03:17:36 +02:00
Power::seedRegOutputActivities(const Instance *inst,
BfsFwdIterator &bfs)
2019-04-29 17:39:05 +02:00
{
2019-05-01 03:17:36 +02:00
auto cell = network_->libertyCell(inst);
LibertyCellSequentialIterator seq_iter(cell);
while (seq_iter.hasNext()) {
Sequential *seq = seq_iter.next();
seedRegOutputActivities(inst, seq, seq->output(), false);
seedRegOutputActivities(inst, seq, seq->outputInv(), true);
// Enqueue register output pins with functions that reference
// the sequential internal pins (IQ, IQN).
InstancePinIterator *pin_iter = network_->pinIterator(inst);
while (pin_iter->hasNext()) {
auto pin = pin_iter->next();
auto port = network_->libertyPort(pin);
auto func = port->function();
if (func) {
Vertex *vertex = graph_->pinDrvrVertex(pin);
if (func->port() == seq->output()
|| func->port() == seq->outputInv()) {
debugPrint1(debug_, "power_activity", 3, "enqueue reg output %s\n",
vertex->name(network_));
bfs.enqueue(vertex);
2019-04-29 17:39:05 +02:00
}
}
}
2019-05-01 03:17:36 +02:00
delete pin_iter;
2019-04-29 17:39:05 +02:00
}
}
void
2019-05-01 03:17:36 +02:00
Power::seedRegOutputActivities(const Instance *reg,
2019-04-29 17:39:05 +02:00
Sequential *seq,
LibertyPort *output,
bool invert)
{
const Pin *pin = network_->findPin(reg, output);
if (pin) {
PwrActivity activity = evalActivity(seq->data(), reg);
if (invert)
activity.set(activity.activity(),
1.0 - activity.duty(),
activity.origin());
setPinActivity(pin, activity);
}
}
////////////////////////////////////////////////////////////////
2018-11-26 18:15:52 +01:00
void
Power::power(const Instance *inst,
LibertyCell *cell,
const Corner *corner,
// Return values.
PowerResult &result)
{
MinMax *mm = MinMax::max();
const DcalcAnalysisPt *dcalc_ap = corner->findDcalcAnalysisPt(mm);
const Clock *inst_clk = findInstClk(inst);
2018-11-26 18:15:52 +01:00
InstancePinIterator *pin_iter = network_->pinIterator(inst);
while (pin_iter->hasNext()) {
const Pin *to_pin = pin_iter->next();
const LibertyPort *to_port = network_->libertyPort(to_pin);
float load_cap = to_port->direction()->isAnyOutput()
2019-05-28 07:46:24 +02:00
? graph_delay_calc_->loadCap(to_pin, dcalc_ap)
2018-11-26 18:15:52 +01:00
: 0.0;
PwrActivity activity = findClkedActivity(to_pin, inst_clk);
2019-04-19 03:01:10 +02:00
if (to_port->direction()->isAnyOutput())
2019-04-29 17:39:05 +02:00
findSwitchingPower(cell, to_port, activity, load_cap,
2018-11-26 18:15:52 +01:00
dcalc_ap, result);
findInternalPower(to_pin, to_port, inst, cell, activity,
load_cap, dcalc_ap, result);
2018-11-26 18:15:52 +01:00
}
delete pin_iter;
findLeakagePower(inst, cell, result);
}
const Clock *
Power::findInstClk(const Instance *inst)
{
const Clock *inst_clk = nullptr;
InstancePinIterator *pin_iter = network_->pinIterator(inst);
while (pin_iter->hasNext()) {
const Pin *pin = pin_iter->next();
2019-04-29 17:39:05 +02:00
const Clock *clk = findClk(pin);
if (clk)
inst_clk = clk;
}
delete pin_iter;
return inst_clk;
}
2018-11-26 18:15:52 +01:00
void
Power::findInternalPower(const Pin *to_pin,
const LibertyPort *to_port,
const Instance *inst,
2018-11-26 18:15:52 +01:00
LibertyCell *cell,
PwrActivity &to_activity,
2018-11-26 18:15:52 +01:00
float load_cap,
const DcalcAnalysisPt *dcalc_ap,
// Return values.
PowerResult &result)
{
2019-02-18 19:56:38 +01:00
debugPrint3(debug_, "power", 2, "internal %s/%s (%s)\n",
2018-11-26 18:15:52 +01:00
network_->pathName(inst),
to_port->name(),
cell->name());
const Pvt *pvt = dcalc_ap->operatingConditions();
2019-04-29 17:39:05 +02:00
debugPrint1(debug_, "power", 2, " cap = %s\n",
units_->capacitanceUnit()->asString(load_cap));
debugPrint0(debug_, "power", 2, " when act/ns duty energy power\n");
float internal = 0.0;
2018-12-05 23:18:41 +01:00
LibertyCellInternalPowerIterator pwr_iter(cell);
while (pwr_iter.hasNext()) {
InternalPower *pwr = pwr_iter.next();
2019-02-18 19:56:38 +01:00
if (pwr->port() == to_port) {
const char *related_pg_pin = pwr->relatedPgPin();
const LibertyPort *from_port = pwr->relatedPort();
2019-04-29 17:39:05 +02:00
FuncExpr *when = pwr->when();
2019-05-20 01:06:06 +02:00
FuncExpr *infered_when = nullptr;
if (from_port) {
if (when == nullptr) {
FuncExpr *func = to_port->function();
if (func)
infered_when = inferedWhen(func, from_port);
}
}
else
from_port = to_port;
// If all the "when" clauses exist VSS internal power is ignored.
2019-06-20 01:05:13 +02:00
const Pin *from_pin = network_->findPin(inst, from_port);
if (from_pin
&& ((when && internalPowerMissingWhen(cell, to_port, related_pg_pin))
|| pgNameVoltage(cell, related_pg_pin, dcalc_ap) != 0.0)) {
Vertex *from_vertex = graph_->pinLoadVertex(from_pin);
float duty;
if (infered_when) {
PwrActivity from_activity = findActivity(from_pin);
PwrActivity to_activity = findActivity(to_pin);
float duty1 = evalActivity(infered_when, inst).duty();
if (to_activity.activity() == 0.0)
duty = 0.0;
2019-06-19 16:55:04 +02:00
else
2019-06-20 01:05:13 +02:00
duty = from_activity.activity() / to_activity.activity() * duty1;
}
else if (when)
duty = evalActivity(when, inst).duty();
else if (search_->isClock(from_vertex))
duty = 1.0;
else
duty = 0.5;
float port_energy = 0.0;
2019-07-18 15:19:00 +02:00
for (auto to_tr : TransRiseFall::range()) {
2019-06-20 01:05:13 +02:00
// Should use unateness to find from_tr.
TransRiseFall *from_tr = to_tr;
float slew = delayAsFloat(graph_->slew(from_vertex,
from_tr,
dcalc_ap->index()));
float table_energy = pwr->power(to_tr, pvt, slew, load_cap);
float tr_energy = table_energy * duty;
debugPrint4(debug_, "power", 3, " %s energy = %9.2e * %.2f = %9.2e\n",
to_tr->shortName(),
table_energy,
duty,
2019-06-20 01:05:13 +02:00
tr_energy);
port_energy += tr_energy;
}
2019-06-20 01:05:13 +02:00
float port_internal = port_energy * to_activity.activity();
debugPrint8(debug_, "power", 2, " %s -> %s %s %.2f %.2f %9.2e %9.2e %s\n",
from_port->name(),
to_port->name(),
when ? when->asString() : (infered_when ? infered_when->asString() : " "),
to_activity.activity() * 1e-9,
duty,
port_energy,
port_internal,
related_pg_pin ? related_pg_pin : "no pg_pin");
internal += port_internal;
2018-11-26 18:15:52 +01:00
}
2019-05-20 01:06:06 +02:00
if (infered_when)
infered_when->deleteSubexprs();
2018-11-26 18:15:52 +01:00
}
}
result.setInternal(result.internal() + internal);
}
2019-05-20 01:06:06 +02:00
////////////////////////////////////////////////////////////////
static bool
isPortRef(FuncExpr *expr,
const LibertyPort *port)
{
return (expr->op() == FuncExpr::op_port
&& expr->port() == port)
|| (expr->op() == FuncExpr::op_not
&& expr->left()->op() == FuncExpr::op_port
&& expr->left()->port() == port);
}
static FuncExpr *
negate(FuncExpr *expr)
{
if (expr->op() == FuncExpr::op_not)
return expr->left()->copy();
else
return FuncExpr::makeNot(expr->copy());
}
FuncExpr *
Power::inferedWhen(FuncExpr *expr,
const LibertyPort *from_port)
{
switch (expr->op()) {
case FuncExpr::op_port: {
if (expr->port() == from_port)
return FuncExpr::makeOne();
else
return nullptr;
}
case FuncExpr::op_not:
return inferedWhen(expr->left(), from_port);
case FuncExpr::op_or:
case FuncExpr::op_xor: {
if (isPortRef(expr->left(), from_port))
return negate(expr->right());
if (isPortRef(expr->right(), from_port))
return negate(expr->left());
2019-08-13 06:36:32 +02:00
break;
2019-05-20 01:06:06 +02:00
}
case FuncExpr::op_and: {
if (isPortRef(expr->left(), from_port))
return expr->right()->copy();
if (isPortRef(expr->right(), from_port))
return expr->left()->copy();
2019-08-13 06:36:32 +02:00
break;
2019-05-20 01:06:06 +02:00
}
case FuncExpr::op_one:
case FuncExpr::op_zero:
2019-08-13 06:36:32 +02:00
break;
2019-05-20 01:06:06 +02:00
}
return nullptr;
2019-05-20 01:06:06 +02:00
}
////////////////////////////////////////////////////////////////
// Return true if some a "when" clause for the internal power to_port
// is missing.
bool
Power::internalPowerMissingWhen(LibertyCell *cell,
const LibertyPort *to_port,
const char *related_pg_pin)
{
int when_input_count = 0;
int when_count = 0;
LibertyCellInternalPowerIterator pwr_iter(cell);
while (pwr_iter.hasNext()) {
auto pwr = pwr_iter.next();
auto when = pwr->when();
if (pwr->port() == to_port
&& pwr->relatedPort() == nullptr
&& stringEqIf(pwr->relatedPgPin(), related_pg_pin)
&& when) {
when_count++;
when_input_count = funcExprPortCount(when);
}
2019-02-18 19:56:38 +01:00
}
return when_count != (1 << when_input_count);
}
2019-02-18 19:56:38 +01:00
static int
funcExprPortCount(FuncExpr *expr)
{
int port_count = 0;
FuncExprPortIterator port_iter(expr);
while (port_iter.hasNext()) {
port_iter.next();
port_count++;
}
return port_count;
}
2018-11-26 18:15:52 +01:00
void
2019-04-01 18:05:07 +02:00
Power::findLeakagePower(const Instance *,
2018-11-26 18:15:52 +01:00
LibertyCell *cell,
// Return values.
PowerResult &result)
{
2019-04-01 18:05:07 +02:00
float cond_leakage = 0.0;
bool found_cond = false;
float default_leakage = 0.0;
bool found_default = false;
2018-12-05 23:18:41 +01:00
LibertyCellLeakagePowerIterator pwr_iter(cell);
while (pwr_iter.hasNext()) {
LeakagePower *leak = pwr_iter.next();
2018-11-26 18:15:52 +01:00
FuncExpr *when = leak->when();
if (when) {
2019-04-01 18:05:07 +02:00
FuncExprPortIterator port_iter(when);
float duty = 2.0;
2019-04-01 18:05:07 +02:00
while (port_iter.hasNext()) {
auto port = port_iter.next();
if (port->direction()->isAnyInput())
duty *= .5;
2018-11-26 18:15:52 +01:00
}
2019-04-01 18:05:07 +02:00
debugPrint4(debug_, "power", 2, "leakage %s %s %.3e * %.2f\n",
cell->name(),
when->asString(),
leak->power(),
duty);
cond_leakage += leak->power() * duty;
found_cond = true;
2018-11-26 18:15:52 +01:00
}
2019-04-01 18:05:07 +02:00
else {
debugPrint2(debug_, "power", 2, "leakage default %s %.3e\n",
cell->name(),
leak->power());
default_leakage += leak->power();
found_default = true;
}
}
float leakage = 0.0;
float leak;
bool exists;
cell->leakagePower(leak, exists);
if (exists) {
// Prefer cell_leakage_power until propagated activities exist.
2019-04-19 03:01:10 +02:00
debugPrint2(debug_, "power", 2, "leakage cell %s %.3e\n",
2019-04-01 18:05:07 +02:00
cell->name(),
leak);
leakage = leak;
2018-11-26 18:15:52 +01:00
}
2019-04-01 18:05:07 +02:00
// Ignore default leakages unless there are no conditional leakage groups.
else if (found_cond)
leakage = cond_leakage;
else if (found_default)
leakage = default_leakage;
result.setLeakage(result.leakage() + leakage);
2018-11-26 18:15:52 +01:00
}
void
2018-12-05 23:18:41 +01:00
Power::findSwitchingPower(LibertyCell *cell,
2018-11-26 18:15:52 +01:00
const LibertyPort *to_port,
2019-04-29 17:39:05 +02:00
PwrActivity &activity,
2018-11-26 18:15:52 +01:00
float load_cap,
const DcalcAnalysisPt *dcalc_ap,
// Return values.
PowerResult &result)
{
float volt = portVoltage(cell, to_port, dcalc_ap);
2019-04-29 17:39:05 +02:00
float switching = .5 * load_cap * volt * volt * activity.activity();
2019-04-19 03:01:10 +02:00
debugPrint5(debug_, "power", 2, "switching %s/%s activity = %.2e volt = %.2f %.3e\n",
cell->name(),
to_port->name(),
2019-04-29 17:39:05 +02:00
activity.activity(),
2019-04-19 03:01:10 +02:00
volt,
switching);
result.setSwitching(result.switching() + switching);
2019-04-01 18:05:07 +02:00
}
2019-04-29 17:39:05 +02:00
PwrActivity
Power::findClkedActivity(const Pin *pin)
2019-04-29 17:39:05 +02:00
{
const Instance *inst = network_->instance(pin);
const Clock *inst_clk = findInstClk(inst);
return findClkedActivity(pin, inst_clk);
2019-04-29 17:39:05 +02:00
}
PwrActivity
Power::findClkedActivity(const Pin *pin,
const Clock *inst_clk)
2019-04-29 17:39:05 +02:00
{
const Clock *clk = findClk(pin);
if (clk == nullptr)
clk = inst_clk;
2018-11-26 18:15:52 +01:00
if (clk) {
2018-12-11 19:47:04 +01:00
float period = clk->period();
if (period > 0.0) {
PwrActivity activity = findActivity(pin);
return PwrActivity(activity.activity() / period,
activity.duty(),
activity.origin());
2018-12-11 19:47:04 +01:00
}
2018-11-26 18:15:52 +01:00
}
// gotta find a clock someplace...
return PwrActivity(input_activity_.activity(),
input_activity_.duty(),
PwrActivityOrigin::defaulted);
}
PwrActivity
Power::findActivity(const Pin *pin)
{
Vertex *vertex = graph_->pinLoadVertex(pin);
if (search_->isClock(vertex))
return PwrActivity(2.0, 0.5, PwrActivityOrigin::clock);
else if (global_activity_.isSet())
return global_activity_;
else {
if (activity_map_.hasKey(pin)) {
PwrActivity &activity = activity_map_[pin];
if (activity.origin() != PwrActivityOrigin::unknown)
return activity;
}
}
return input_activity_;
}
float
Power::portVoltage(LibertyCell *cell,
const LibertyPort *port,
const DcalcAnalysisPt *dcalc_ap)
{
return pgNameVoltage(cell, port->relatedPowerPin(), dcalc_ap);
2018-11-26 18:15:52 +01:00
}
float
Power::pgNameVoltage(LibertyCell *cell,
const char *pg_port_name,
const DcalcAnalysisPt *dcalc_ap)
2018-11-26 18:15:52 +01:00
{
if (pg_port_name) {
auto pg_port = cell->findPgPort(pg_port_name);
if (pg_port) {
auto volt_name = pg_port->voltageName();
auto library = cell->libertyLibrary();
float voltage;
bool exists;
library->supplyVoltage(volt_name, voltage, exists);
if (exists)
return voltage;
}
}
2018-11-26 18:15:52 +01:00
const Pvt *pvt = dcalc_ap->operatingConditions();
2019-03-13 01:25:53 +01:00
if (pvt == nullptr)
2018-11-26 18:15:52 +01:00
pvt = cell->libertyLibrary()->defaultOperatingConditions();
if (pvt)
return pvt->voltage();
else
return 0.0;
}
2019-04-29 17:39:05 +02:00
const Clock *
Power::findClk(const Pin *to_pin)
2018-11-26 18:15:52 +01:00
{
2019-04-29 17:39:05 +02:00
const Clock *clk = nullptr;
2018-11-26 18:15:52 +01:00
Vertex *to_vertex = graph_->pinDrvrVertex(to_pin);
VertexPathIterator path_iter(to_vertex, this);
while (path_iter.hasNext()) {
PathVertex *path = path_iter.next();
const Clock *path_clk = path->clock(this);
if (path_clk
2019-03-13 01:25:53 +01:00
&& (clk == nullptr
2018-11-26 18:15:52 +01:00
|| path_clk->period() < clk->period()))
clk = path_clk;
}
2019-04-29 17:39:05 +02:00
return clk;
2018-11-26 18:15:52 +01:00
}
////////////////////////////////////////////////////////////////
PowerResult::PowerResult() :
internal_(0.0),
switching_(0.0),
leakage_(0.0)
{
}
void
PowerResult::clear()
{
internal_ = 0.0;
switching_ = 0.0;
leakage_ = 0.0;
}
float
PowerResult::total() const
{
return internal_ + switching_ + leakage_;
2018-11-26 18:15:52 +01:00
}
void
PowerResult::setInternal(float internal)
{
internal_ = internal;
}
void
PowerResult::setLeakage(float leakage)
{
leakage_ = leakage;
}
void
PowerResult::setSwitching(float switching)
{
switching_ = switching;
}
void
PowerResult::incr(PowerResult &result)
{
internal_ += result.internal_;
switching_ += result.switching_;
leakage_ += result.leakage_;
}
2019-04-29 17:39:05 +02:00
////////////////////////////////////////////////////////////////
static EnumNameMap<PwrActivityOrigin> pwr_activity_origin_map =
{{PwrActivityOrigin::global, "global"},
{PwrActivityOrigin::input, "input"},
{PwrActivityOrigin::user, "user"},
{PwrActivityOrigin::propagated, "propagated"},
{PwrActivityOrigin::clock, "clock"},
{PwrActivityOrigin::constant, "constant"},
{PwrActivityOrigin::defaulted, "defaulted"},
{PwrActivityOrigin::unknown, "unknown"}};
PwrActivity::PwrActivity(float activity,
float duty,
PwrActivityOrigin origin) :
activity_(activity),
duty_(duty),
origin_(origin)
{
}
PwrActivity::PwrActivity() :
activity_(0.0),
duty_(0.0),
origin_(PwrActivityOrigin::unknown)
{
}
void
PwrActivity::set(float activity,
float duty,
PwrActivityOrigin origin)
{
activity_ = activity;
duty_ = duty;
origin_ = origin;
}
bool
PwrActivity::isSet() const
{
return origin_ != PwrActivityOrigin::unknown;
}
const char *
PwrActivity::originName() const
{
return pwr_activity_origin_map.find(origin_);
}
2018-11-26 18:15:52 +01:00
} // namespace