import contact import pgate import debug from tech import drc, parameter, spice from ptx import ptx from vector import vector from globals import OPTS import logical_effort class pnand2(pgate.pgate): """ This module generates gds of a parametrically sized 2-input nand. This model use ptx to generate a 2-input nand within a cetrain height. """ unique_id = 1 def __init__(self, size=1, height=None): """ Creates a cell for a simple 2 input nand """ name = "pnand2_{0}".format(pnand2.unique_id) pnand2.unique_id += 1 pgate.pgate.__init__(self, name, height) debug.info(2, "create pnand2 structure {0} with size of {1}".format(name, size)) self.size = size self.nmos_size = 2*size self.pmos_size = parameter["beta"]*size self.nmos_width = self.nmos_size*drc("minwidth_tx") self.pmos_width = self.pmos_size*drc("minwidth_tx") # FIXME: Allow these to be sized debug.check(size==1,"Size 1 pnand2 is only supported now.") self.tx_mults = 1 self.create_netlist() if not OPTS.netlist_only: self.create_layout() #self.DRC_LVS() def create_netlist(self): self.add_pins() self.add_ptx() self.create_ptx() def create_layout(self): """ Calls all functions related to the generation of the layout """ self.setup_layout_constants() self.route_supply_rails() self.place_ptx() self.connect_rails() self.add_well_contacts() self.extend_wells(self.well_pos) self.route_inputs() self.route_output() def add_pins(self): """ Adds pins for spice netlist """ self.add_pin_list(["A", "B", "Z", "vdd", "gnd"]) def add_ptx(self): """ Create the PMOS and NMOS transistors. """ self.nmos = ptx(width=self.nmos_width, mults=self.tx_mults, tx_type="nmos", connect_poly=True, connect_active=True) self.add_mod(self.nmos) self.pmos = ptx(width=self.pmos_width, mults=self.tx_mults, tx_type="pmos", connect_poly=True, connect_active=True) self.add_mod(self.pmos) def setup_layout_constants(self): """ Pre-compute some handy layout parameters. """ # metal spacing to allow contacts on any layer self.input_spacing = max(self.poly_space + contact.poly.first_layer_width, self.m1_space + contact.m1m2.first_layer_width, self.m2_space + contact.m2m3.first_layer_width, self.m3_space + contact.m2m3.second_layer_width) # Compute the other pmos2 location, but determining offset to overlap the # source and drain pins self.overlap_offset = self.pmos.get_pin("D").ll() - self.pmos.get_pin("S").ll() # Two PMOS devices and a well contact. Separation between each. # Enclosure space on the sides. self.well_width = 2*self.pmos.active_width + contact.active.width \ + 2*drc("active_to_body_active") + 2*drc("well_enclosure_active") self.width = self.well_width # Height is an input parameter, so it is not recomputed. # This is the extra space needed to ensure DRC rules to the active contacts extra_contact_space = max(-self.nmos.get_pin("D").by(),0) # This is a poly-to-poly of a flipped cell self.top_bottom_space = max(0.5*self.m1_width + self.m1_space + extra_contact_space, drc("poly_extend_active"), self.poly_space) def route_supply_rails(self): """ Add vdd/gnd rails to the top and bottom. """ self.add_layout_pin_rect_center(text="gnd", layer="metal1", offset=vector(0.5*self.width,0), width=self.width) self.add_layout_pin_rect_center(text="vdd", layer="metal1", offset=vector(0.5*self.width,self.height), width=self.width) def create_ptx(self): """ Add PMOS and NMOS to the netlist. """ self.pmos1_inst=self.add_inst(name="pnand2_pmos1", mod=self.pmos) self.connect_inst(["vdd", "A", "Z", "vdd"]) self.pmos2_inst = self.add_inst(name="pnand2_pmos2", mod=self.pmos) self.connect_inst(["Z", "B", "vdd", "vdd"]) self.nmos1_inst=self.add_inst(name="pnand2_nmos1", mod=self.nmos) self.connect_inst(["Z", "B", "net1", "gnd"]) self.nmos2_inst=self.add_inst(name="pnand2_nmos2", mod=self.nmos) self.connect_inst(["net1", "A", "gnd", "gnd"]) def place_ptx(self): """ Place PMOS and NMOS to the layout at the upper-most and lowest position to provide maximum routing in channel """ pmos1_pos = vector(self.pmos.active_offset.x, self.height - self.pmos.active_height - self.top_bottom_space) self.pmos1_inst.place(pmos1_pos) self.pmos2_pos = pmos1_pos + self.overlap_offset self.pmos2_inst.place(self.pmos2_pos) nmos1_pos = vector(self.pmos.active_offset.x, self.top_bottom_space) self.nmos1_inst.place(nmos1_pos) self.nmos2_pos = nmos1_pos + self.overlap_offset self.nmos2_inst.place(self.nmos2_pos) # Output position will be in between the PMOS and NMOS self.output_pos = vector(0,0.5*(pmos1_pos.y+nmos1_pos.y+self.nmos.active_height)) # This will help with the wells self.well_pos = vector(0,self.nmos1_inst.uy()) def add_well_contacts(self): """ Add n/p well taps to the layout and connect to supplies AFTER the wells are created """ self.add_nwell_contact(self.pmos, self.pmos2_pos) self.add_pwell_contact(self.nmos, self.nmos2_pos) def connect_rails(self): """ Connect the nmos and pmos to its respective power rails """ self.connect_pin_to_rail(self.nmos1_inst,"S","gnd") self.connect_pin_to_rail(self.pmos1_inst,"S","vdd") self.connect_pin_to_rail(self.pmos2_inst,"D","vdd") def route_inputs(self): """ Route the A and B inputs """ inputB_yoffset = self.nmos2_pos.y + self.nmos.active_height + self.m2_space + 0.5*self.m2_width self.route_input_gate(self.pmos2_inst, self.nmos2_inst, inputB_yoffset, "B", position="center") # This will help with the wells and the input/output placement self.inputA_yoffset = inputB_yoffset + self.input_spacing self.route_input_gate(self.pmos1_inst, self.nmos1_inst, self.inputA_yoffset, "A") def route_output(self): """ Route the Z output """ # PMOS1 drain pmos_pin = self.pmos1_inst.get_pin("D") # NMOS2 drain nmos_pin = self.nmos2_inst.get_pin("D") # Output pin mid_offset = vector(nmos_pin.center().x,self.inputA_yoffset) self.add_contact_center(layers=("metal1", "via1", "metal2"), offset=pmos_pin.center()) self.add_contact_center(layers=("metal1", "via1", "metal2"), offset=nmos_pin.center()) self.add_contact_center(layers=("metal1", "via1", "metal2"), offset=mid_offset, rotate=90) # PMOS1 to mid-drain to NMOS2 drain self.add_path("metal2",[pmos_pin.bc(), mid_offset, nmos_pin.uc()]) # This extends the output to the edge of the cell self.add_layout_pin_rect_center(text="Z", layer="metal1", offset=mid_offset, width=contact.m1m2.first_layer_height, height=contact.m1m2.first_layer_width) def input_load(self): return ((self.nmos_size+self.pmos_size)/parameter["min_tx_size"])*spice["min_tx_gate_c"] def analytical_delay(self, slew, load=0.0): r = spice["min_tx_r"]/(self.nmos_size/parameter["min_tx_size"]) c_para = spice["min_tx_drain_c"]*(self.nmos_size/parameter["min_tx_size"])#ff return self.cal_delay_with_rc(r = r, c = c_para+load, slew = slew) def analytical_power(self, proc, vdd, temp, load): """Returns dynamic and leakage power. Results in nW""" c_eff = self.calculate_effective_capacitance(load) freq = spice["default_event_rate"] power_dyn = c_eff*vdd*vdd*freq power_leak = spice["nand2_leakage"] total_power = self.return_power(power_dyn, power_leak) return total_power def calculate_effective_capacitance(self, load): """Computes effective capacitance. Results in fF""" c_load = load c_para = spice["min_tx_drain_c"]*(self.nmos_size/parameter["min_tx_size"])#ff transition_prob = spice["nand2_transition_prob"] return transition_prob*(c_load + c_para) def get_cin(self): """Return the relative input capacitance of a single input""" return self.nmos_size+self.pmos_size def get_effort_stage(self, cout): """Returns an object representing the parameters for delay in tau units.""" parasitic_delay = 2 return logical_effort.logical_effort(self.size, self.get_cin(), cout, parasitic_delay)