import os from sklearn.linear_model import LinearRegression import mapping reference_dir = "data" def run_model(x,y,test_x,test_y): mp = mapping.mapping() model = LinearRegression() model.fit(x, y) print(model.coef_) print(model.intercept_) pred = model.predict(test_x) #print(pred) unscaled_labels = mp.unscale_data(test_y.tolist(), reference_dir) unscaled_preds = mp.unscale_data(pred.tolist(), reference_dir) unscaled_labels, unscaled_preds = (list(t) for t in zip(*sorted(zip(unscaled_labels, unscaled_preds)))) avg_error = mp.abs_error(unscaled_labels, unscaled_preds) max_error = mp.max_error(unscaled_labels, unscaled_preds) min_error = mp.min_error(unscaled_labels, unscaled_preds) errors = {"avg_error": avg_error, "max_error":max_error, "min_error":min_error} return errors