# See LICENSE for licensing information. # # Copyright (c) 2016-2019 Regents of the University of California and The Board # of Regents for the Oklahoma Agricultural and Mechanical College # (acting for and on behalf of Oklahoma State University) # All rights reserved. # import contact import pgate import debug from tech import drc, parameter, spice from vector import vector from sram_factory import factory class pnor2(pgate.pgate): """ This module generates gds of a parametrically sized 2-input nor. This model use ptx to generate a 2-input nor within a cetrain height. """ def __init__(self, name, size=1, height=None): """ Creates a cell for a simple 2 input nor """ debug.info(2, "creating pnor2 structure {0} with size of {1}".format(name, size)) self.add_comment("size: {}".format(size)) self.nmos_size = size # We will just make this 1.5 times for now. NORs are not ideal anyhow. self.pmos_size = 1.5 * parameter["beta"] * size self.nmos_width = self.nmos_size * drc("minwidth_tx") self.pmos_width = self.pmos_size * drc("minwidth_tx") # FIXME: Allow these to be sized debug.check(size==1, "Size 1 pnor2 is only supported now.") self.tx_mults = 1 # Creates the netlist and layout pgate.pgate.__init__(self, name, height) def create_netlist(self): self.add_pins() self.add_ptx() self.create_ptx() def create_layout(self): """ Calls all functions related to the generation of the layout """ self.setup_layout_constants() self.place_ptx() self.add_well_contacts() self.determine_width() self.route_supply_rails() self.connect_rails() self.extend_wells() self.route_inputs() self.route_output() def add_pins(self): """ Adds pins for spice netlist """ pin_list = ["A", "B", "Z", "vdd", "gnd"] dir_list = ["INPUT", "INPUT", "OUTPUT", "INOUT", "INOUT"] self.add_pin_list(pin_list, dir_list) def add_ptx(self): """ Create the PMOS and NMOS transistors. """ self.nmos = factory.create(module_type="ptx", width=self.nmos_width, mults=self.tx_mults, tx_type="nmos", connect_poly=True, connect_active=True) self.add_mod(self.nmos) self.pmos_nd = factory.create(module_type="ptx", width=self.pmos_width, mults=self.tx_mults, tx_type="pmos", add_drain_contact=False, connect_poly=True, connect_active=True) self.add_mod(self.pmos_nd) self.pmos_ns = factory.create(module_type="ptx", width=self.pmos_width, mults=self.tx_mults, tx_type="pmos", add_source_contact=False, connect_poly=True, connect_active=True) self.add_mod(self.pmos_ns) def setup_layout_constants(self): """ Pre-compute some handy layout parameters. """ # metal spacing to allow contacts on any layer self.input_spacing = max(self.poly_space + contact.poly_contact.first_layer_width, self.m1_space + contact.m1_via.first_layer_width, self.m2_space + contact.m2_via.first_layer_width, self.m3_space + contact.m2_via.second_layer_width) # Compute the other pmos2 location, but determining # offset to overlap the source and drain pins self.overlap_offset = self.pmos_ns.get_pin("D").ll() - self.pmos_nd.get_pin("S").ll() # Two PMOS devices and a well contact. Separation between each. # Enclosure space on the sides. self.width = 2 * self.pmos_ns.active_width \ + self.pmos_ns.active_contact.width \ + 2 * self.active_space \ + 0.5 * self.nwell_enclose_active self.well_width = self.width + 2 * self.nwell_enclose_active # Height is an input parameter, so it is not recomputed. # This is the extra space needed to ensure DRC rules # to the active contacts extra_contact_space = max(-self.nmos.get_pin("D").by(), 0) # This is a poly-to-poly of a flipped cell self.top_bottom_space = max(0.5 * self.m1_width + self.m1_space + extra_contact_space, self.poly_extend_active, self.poly_space) def route_supply_rails(self): """ Add vdd/gnd rails to the top and bottom. """ self.add_layout_pin_rect_center(text="gnd", layer="m1", offset=vector(0.5 * self.width, 0), width=self.width) self.add_layout_pin_rect_center(text="vdd", layer="m1", offset=vector(0.5 * self.width, self.height), width=self.width) def create_ptx(self): """ Add PMOS and NMOS to the layout at the upper-most and lowest position to provide maximum routing in channel """ self.pmos1_inst = self.add_inst(name="pnor2_pmos1", mod=self.pmos_nd) self.connect_inst(["vdd", "A", "net1", "vdd"]) self.pmos2_inst = self.add_inst(name="pnor2_pmos2", mod=self.pmos_ns) self.connect_inst(["net1", "B", "Z", "vdd"]) self.nmos1_inst = self.add_inst(name="pnor2_nmos1", mod=self.nmos) self.connect_inst(["Z", "A", "gnd", "gnd"]) self.nmos2_inst = self.add_inst(name="pnor2_nmos2", mod=self.nmos) self.connect_inst(["Z", "B", "gnd", "gnd"]) def place_ptx(self): """ Add PMOS and NMOS to the layout at the upper-most and lowest position to provide maximum routing in channel """ pmos1_pos = vector(self.pmos_ns.active_offset.x, self.height - self.pmos_ns.active_height \ - self.top_bottom_space) self.pmos1_inst.place(pmos1_pos) self.pmos2_pos = pmos1_pos + self.overlap_offset self.pmos2_inst.place(self.pmos2_pos) nmos1_pos = vector(self.pmos_ns.active_offset.x, self.top_bottom_space) self.nmos1_inst.place(nmos1_pos) self.nmos2_pos = nmos1_pos + self.overlap_offset self.nmos2_inst.place(self.nmos2_pos) # Output position will be in between the PMOS and NMOS self.output_pos = vector(0, 0.5 * (pmos1_pos.y + nmos1_pos.y + self.nmos.active_height)) def add_well_contacts(self): """ Add n/p well taps to the layout and connect to supplies """ self.add_nwell_contact(self.pmos_ns, self.pmos2_pos) self.add_pwell_contact(self.nmos, self.nmos2_pos) def connect_rails(self): """ Connect the nmos and pmos to its respective power rails """ self.connect_pin_to_rail(self.nmos1_inst, "S", "gnd") self.connect_pin_to_rail(self.nmos2_inst, "D", "gnd") self.connect_pin_to_rail(self.pmos1_inst, "S", "vdd") def route_inputs(self): """ Route the A and B inputs """ # Use M2 spaces so we can drop vias on the pins later! inputB_yoffset = self.nmos2_inst.uy() + contact.poly_contact.height self.route_input_gate(self.pmos2_inst, self.nmos2_inst, inputB_yoffset, "B", position="center") # This will help with the wells and the input/output placement self.inputA_yoffset = inputB_yoffset + self.input_spacing self.route_input_gate(self.pmos1_inst, self.nmos1_inst, self.inputA_yoffset, "A") def route_output(self): """ Route the Z output """ # PMOS2 drain pmos_pin = self.pmos2_inst.get_pin("D") # NMOS1 drain nmos_pin = self.nmos1_inst.get_pin("D") # NMOS2 drain (for output via placement) nmos2_pin = self.nmos2_inst.get_pin("D") # Go up to metal2 for ease on all output pins self.add_via_center(layers=self.m1_stack, offset=pmos_pin.center()) m1m2_contact = self.add_via_center(layers=self.m1_stack, offset=nmos_pin.center()) mid1_offset = vector(pmos_pin.center().x, nmos2_pin.center().y) mid2_offset = vector(pmos_pin.center().x, self.inputA_yoffset) mid3_offset = mid2_offset + vector(self.m2_width, 0) # PMOS1 to mid-drain to NMOS2 drain self.add_path("m2", [pmos_pin.center(), mid2_offset, mid3_offset]) self.add_path("m2", [nmos_pin.rc(), mid1_offset, mid2_offset]) # This extends the output to the edge of the cell self.add_via_center(layers=self.m1_stack, offset=mid3_offset) self.add_layout_pin_rect_center(text="Z", layer="m1", offset=mid3_offset, width=contact.m1_via.first_layer_height, height=contact.m1_via.first_layer_width) def analytical_power(self, corner, load): """Returns dynamic and leakage power. Results in nW""" c_eff = self.calculate_effective_capacitance(load) freq = spice["default_event_frequency"] power_dyn = self.calc_dynamic_power(corner, c_eff, freq) power_leak = spice["nor2_leakage"] total_power = self.return_power(power_dyn, power_leak) return total_power def calculate_effective_capacitance(self, load): """Computes effective capacitance. Results in fF""" c_load = load # In fF c_para = spice["min_tx_drain_c"] * (self.nmos_size / parameter["min_tx_size"]) transition_prob = 0.1875 return transition_prob * (c_load + c_para) def build_graph(self, graph, inst_name, port_nets): """Adds edges based on inputs/outputs. Overrides base class function.""" self.add_graph_edges(graph, port_nets)