import os import sys util_dir = "gen_model_util" cur_dir = os.path.dirname(os.path.realpath(__file__)) sys.path.insert(1, cur_dir+'/'+util_dir) import mapping import linreg_scikit #import keras_models train_sets = [] test_sets = [] filename = "delays.csv" reference_dir = "data" file_path = reference_dir +'/'+filename num_points_train = 7 mp = mapping.mapping() non_ip_samples, unused_samples = mp.sample_from_file(num_points_train, file_path, reference_dir) nip_features_subset, nip_labels_subset = non_ip_samples[:, :-1], non_ip_samples[:,-1:] nip_test_feature_subset, nip_test_labels_subset = unused_samples[:, :-1], unused_samples[:,-1:] train_sets = [(nip_features_subset, nip_labels_subset)] test_sets = [(nip_test_feature_subset, nip_test_labels_subset)] runs_per_model = 1 for train_tuple, test_tuple in zip(train_sets, test_sets): train_x, train_y = train_tuple test_x, test_y = test_tuple errors = {} min_train_set = None for _ in range(runs_per_model): #new_error = lr_scikit.run_model(train_x, train_y, test_x, test_y) new_error = keras_models.run_model(train_x, train_y, test_x, test_y) print(new_error)