
OPENRAM
AN OPEN-SOURCE MEMORY COMPILER

VLSI-DA at	University	of	California	Santa	Cruz
VLSIARCH at	Oklahoma	State	University

1

Contributors
• Presenters

• Prof. Matthew R. Guthaus (mrg@ucsc.edu)
• Samira Ataei (ataei@ostatemail.okstate.edu)

• Authors
• Prof. Matthew R. Guthaus, Prof. James E. Stine, Samira Ataei, Brian

Chen, Bin Wu, Mehedi Sarwar

• Other student contributors
• Jeff Butera, Tom Golubev, Seokjoong Kim, Matthew Gaalswyk, and

Son Bui

8 November 2016 OpenRAM : An Open-Source Memory Compiler

2

Outline
• Background on Memory Compilers
• OpenRAM Features
• OpenRAM Architecture and Circuits
• OpenRAM Usage
• OpenRAM Development
• How to port OpenRAM to a New Technology
• How to change the OpenRAM Circuits/Modules
• Conclusion

2

OpenRAM : An Open-Source Memory Compiler8 November 2016

3

Why an Open Source Memory Compiler is needed?
● SRAMs have become a standard component in SoC, ASIC, and

microprocessor designs and play a significant role in overall system
performance and costs.

● Regular structure of memories leads to automation, but developing this with
multiple technologies and tool methodologies is challenging.

● Most academic ICs design are limited by the availability of memories.

● Custom memory design can be a tedious and time-consuming task and may
not be the intended purpose of the research.

● The lack of a customizable compiler makes it difficult for researchers to
prototype and verify circuits beyond a single row or column of memory cells.

3

OpenRAM : An Open-Source Memory Compiler8 November 2016

4

Memory Compiler Options
Contemporary memory compilers usually allow customers to view front-

end simulation and not back-end features unless with a licensing fee.
• Globalfoundries: offers front-end PDKs for free, but not back-end views.

• Virage Logic: provides a dashboard compiler that selects from a pre-designed
configurations.

• Faraday Technologies: provides a black box design kit for UMC technologies.

• Dolphin Technology: offers closed-source compilers for TSMC, UMC, and IBM.

• FabMem: (NCSU research groups) is able to create small arrays, but it is highly
dependent on the Cadence design tools.

• Synopsys Generic Memory Compiler: is not recommended for fabrication
since the supported technologies are not real.

4

OpenRAM : An Open-Source Memory Compiler8 November 2016

5

OpenRAM Motivation
• We believe in OpenRAM

• It is free and open-source
• Helpful to community
• Integrates into computer architecture and digital systems easily.
• Allows researchers to modify and use for existing SRAM

architectures and any memory design (even memresistors).
• We also believe in community

• We want circuits and system research as well as EDA to prosper
• Academic research in memory is important!

8 November 2016 OpenRAM : An Open-Source Memory Compiler

6

Outline
• Background on Memory Compilers
• OpenRAM Features
• OpenRAM Architecture and Circuits
• OpenRAM Usage
• OpenRAM Development
• How to port OpenRAM to a New Technology
• How to change the OpenRAM Circuits/Modules
• Conclusion

6

OpenRAM : An Open-Source Memory Compiler8 November 2016

7

OpenRAM Features
● OpenRAM is implemented in the Python programming language.

● OpenRAM provides reference circuit and physical implementations in a non-
fabricable generic 45nm technology (FreePDK45) and fabricable Scalable
CMOS (SCMOS) by non-confidential MOSIS foundry services.

● OpenRAM includes a characterizer to generate the timing/power results in a
Liberty (lib) file.

● OpenRAM generates GDSII layout data, SPICE netlist, Verilog model,
DRC/LVS verification reports and .lef file for place and route.

● OpenRAM is independent of any specific commercial tool.

● OpenRAM is completely user-modifiable since all source code is open source.
7

OpenRAM : An Open-Source Memory Compiler8 November 2016

8

What is Python?
• Object-oriented rapid prototyping language

• Not just a scripting language
• Not just another Perl

• Rich set of libraries
• numpy, SciPy, etc.

• Easy to learn, read, and use
• Extensible (add new modules)

• C/C++/Fortran/whatever
• Java (through Jython)

• Embeddable in applications

8 November 2016 OpenRAM : An Open-Source Memory Compiler

9

Engineering properties of Python
• Open Source (OSI Certified)

• Copyrighted but use not restricted
• No "viral" license
• Owned by independent non-profit, PSF

• Mature (10+ years old)
• Supportive user community

• Plenty of good books and references
• Simple design and easy to learn

• Reads like “pseudo-code”
• Suitable as first and last language

8 November 2016 OpenRAM : An Open-Source Memory Compiler

10

High-Level Properties
• Extremely portable

• Unix/Linux, Windows, Mac, PalmOS, WindowsCE, RiscOS, VxWorks,
QNX, OS/2, OS/390, AS/400, PlayStation, Sharp Zaurus, BeOS,
VMS…

• Compiles to interpreted byte code
• Compilation is implicit and automatic

• Memory management automatic
• Reference counting for most situations
• Garbage Collection added for cycle detection

• “Safe”: no core dumps due to your bugs

8 November 2016 OpenRAM : An Open-Source Memory Compiler

11

Language Properties
• Everything is an object
• Packages, modules, classes, functions
• Exception handling
• Dynamic typing, polymorphism
• Static scoping
• Operator overloading
• Indentation for block structure

• Otherwise conventional syntax

8 November 2016 OpenRAM : An Open-Source Memory Compiler

12

Outline
• Background on Memory Compilers
• OpenRAM Features
• OpenRAM Architecture and Circuits
• OpenRAM Usage
• OpenRAM Development
• How to port OpenRAM to a New Technology
• How to change the OpenRAM Circuits/Modules
• Conclusion

12

OpenRAM : An Open-Source Memory Compiler8 November 2016

13

Memory Organization

• Special circuit tricks are used for the cell array to improve storage density.
• RAM/ROM naming convention:

• examples: 32 X 8, "32 by 8" => 32 8-bit words
• 1M X 1, "1 meg by 1" => 1M 1-bit words

• Standard address, data and control signal names

8 November 2016 OpenRAM : An Open-Source Memory Compiler

14

Memory Array Architecture

Input-Output
(M bits)

2L-K Bit Line

Word Line
Storage Cell

M*2K

Amplify swing to
rail-to-rail amplitude

Selects appropriate word
(i.e., multiplexer)

Sense Amps/Driver

Column DecodeA0

AK-1

R
ow

 D
ecode

AK

AK+1

AL-1

2L-K row
by

Mx2K column
cell array

Small cells ® small MOSFETs® small dV on bit line (bl)

2LxM memory

8 November 2016 OpenRAM : An Open-Source Memory Compiler

15

• Address pins drive row and column
decoders

• Data pins are bidirectional, shared by
reads and writes

• Output Enable gates the chip’s tristate driver
• Write Enable sets the memory’s read/write mode

• Chip Enable/Chip Select acts as a “master switch”

Tri-state Driver

in out

enable

If enable=0
out = Z

If enable =1
out = in

Memory Matrix

…

…

Data
Pins

Read
Logic

Write
Logic

R
ow

 D
ecoder

Address
Pins

Sense Amps/Drivers

Column Decoder

Write enable
Chip Enable

Output Enable
Write enable

Using External Memories
8 November 2016 OpenRAM : An Open-Source Memory Compiler

16

What’s right/wrong with SRAM?
• It is currently everywhere and will be everywhere.

• It is fast and efficient
• Top of the food chain
• Small footprint

• What’s wrong with it?
• It is not that easy to build without time and experience.
• It is part of every computer system but usually absent from courses

because of time to implement within course.
• This signifies meaningful research is sometimes absent in this area,

because we cannot teach people how to use it!

8 November 2016 OpenRAM : An Open-Source Memory Compiler

17

Static Random Access Memory (SRAM)
8 November 2016 OpenRAM : An Open-Source Memory Compiler

WL

BR

VDD

M5 M6

M4

M11

M2

M3

BL

Q
Q

• SRAM is the most widely used form of on-chip memory RAMs.
• Denser than flip-flops
• Compatible with standard CMOS process
• Faster than DRAM
• Easier to use than DRAM

18

6T SRAM Cell
ü Simple with Differential Structure
ü Small Layout Area
ü Fast Read Operation
X High Leakage
X Write Half-Select Disturbance
X Low Stability at Low Voltages

8 November 2016 OpenRAM : An Open-Source Memory Compiler

WL

BR

VDD

M5 M6

M4

M11

M2

M3

BL

Q
Q

19

• State held by cross-coupled inverters (M1-M4)
• Retains state as long as power supply turned on
• Feedback must be overdriven to write into the memory

WL
BRBL

/QQ

SRAM Cell (The 6T Cell)
8 November 2016 OpenRAM : An Open-Source Memory Compiler

WL

BR

VDD

M5 M6

M4

M11

M2

M3

BL

Q
Q

Write: 1) Set BL, BR to (0,VDD) or (VDD,0)
2) Enable WL (= VDD)

Read: 1) Enable WL (=VDD).
2) Sense a small differential swing on BL/BR

20

Ø Data path for read operation

Ø Data path for write operation

Read/Write Path in SRAM
8 November 2016 OpenRAM : An Open-Source Memory Compiler

21

Latch-based Sense Amplifier

ü Saves power by using Sense clock.
ü Has isolation transistors.

Differential Pair Sense Amplifier

ü Requires no Sense clock.
x Always dissipates static Power.

• Bitline capacitors and resistance is significant for large array.
• Cannot easily change R, C, but can change bitline swing

Latch-Based Sense Amplifier
8 November 2016 OpenRAM : An Open-Source Memory Compiler

22

X The inverter delay does not track the memory
cell delay over all process/environment conditions.

Sense Amplifier Timing
TBL : Time that bitline Voltage is sufficient for sensing.
TSA : Time that sense-amp activates.
(a) Correct sensing when TBL < TSA .
(b) Wrong sensing when TBL > TSA.
(c) Timing margin in SRAM design.

8 November 2016 OpenRAM : An Open-Source Memory Compiler

23

Replica Bitline (RBL) Technique
A Replica Technique for Wordline and Sense Control in Low-Power SRAMs”B. Amruturand M. Horowitz, IEEE JSSC 1998

Memory cells drive
delay of main bitlines.

Memory cells drive
delay of replica bitline.

RBL is fully discharged to
generate the SA enable signal.

8 November 2016 OpenRAM : An Open-Source Memory Compiler

ü PVT variation delay
shift is same for bitlines
and replica bitline.

24

• Height of replica bitline (r) is a fraction of main bitline height (h) and this
fraction is determined by the required bitline swing for proper sensing.

• Replica Cell (RC) in RBL is same as memory cell and is hardcoded to always
save zero value.

OpenRAM : An Open-Source Memory Compiler8 November 2016

Replica Bitline (RBL) Technique

	

VDD

WL

BL BR

RC

6T

6T

SCLK

Vos

VTHInv

Optimum SAE
Timing

SCLK

RBL

BL

OEb

OEb

6T

VDD

WL

BL BR
BL is discharged
by (r/h)% when
SA is enabled.

25

OpenRAM SRAM Architecture
SRAM Major blocks:

• Bit-cell Array (6T SRAM Cell)
• Hierarchical Address Decoder
• Wordline Driver
• Column Multiplexer
• Bitline Precharger
• Latch-type Sense Amplifier
• Tri-state Write Driver
• Control Logic with Replica Bitline

Bit Cell Array

Column Mux

Sense Amp Array

Write Driver Array

Input Data MS-Flop Array

Tri Gate Array

Address
MS-Flop

AND
Array

D
ec

od
er

W
or

dl
in

e
D

riv
er

Predecdoer

Control
Logic

&
Replica
Bit-line

Precharge Array

Bank Select

Address Bus

n
Bidirectional

Data Bus

m

Bank

6T

CLK

CSb

OEb

WEb

25

OpenRAM : An Open-Source Memory Compiler8 November 2016

26

Outline
• Background on Memory Compilers
• OpenRAM Features
• OpenRAM Architecture and Circuits
• OpenRAM Usage
• OpenRAM Development
• How to port OpenRAM to a New Technology
• How to change the OpenRAM Circuits/Modules
• Conclusion

26

OpenRAM : An Open-Source Memory Compiler8 November 2016

27

Getting OpenRAM

• https://github.com/mguthaus/OpenRAM

• git clone https://github.com/mguthaus/OpenRAM.git

• https://openram.soe.ucsc.edu/

• License: GNU General Public License v3

8 November 2016 OpenRAM : An Open-Source Memory Compiler

28

Dependencies
• Python 2.7

• numpy: http://www.numpy.org/

• SPICE (one or more)
• Ngspice: http://ngspice.sourceforge.net/
• HSPICE: from Synopsys

• DRC/LVS (necessary for porting technologies)
• Calibre nmDRC nmLVS: From Mentor Graphics
• Future: magic and netgen

• Technology PDK (one or more)
• FreePDK45: http://www.eda.ncsu.edu/wiki/FreePDK
• SCMOS: https://www.mosis.com/pages/design/flows/design-flow-scmos-kits

• Layout viewer/editor (optional)
• LayoutEditor: http://www.layouteditor.net/
• GLADE: http://www.peardrop.co.uk/
• Magic: http://opencircuitdesign.com/magic/

8 November 2016 OpenRAM : An Open-Source Memory Compiler

29

OpenRAM Directory Structure
• compiler : OpenRAM compiler (OPENRAM_HOME)

• Main source code of compiler in this directory.
• compiler/characterizer : timing characterization code
• compiler/gdsMill : gds reader/writer
• compiler/tests : unit tests

• technology : Technology libraries (OPENRAM_TECH)
• technology/freepdk45 : Library for freepdk45 technology
• technology/scn3me_subm : Llibrary SCMOS technology
• technology/setup_scripts - setup scripts for your PDK

8 November 2016 OpenRAM : An Open-Source Memory Compiler

30

Basic Environment Setup
• OpenRAM has two environment variables:

• OPENRAM_TECH points to a directory where all of your technology
files reside. This allows proprietary technologies in a separate location
with access control.

• OPENRAM_HOME points to the directory of your OpenRAM source
code. This allows a read-only installation if desired.

• Your PDK for a specific technology
• This is set up in

$OPENRAM_TECH/setup_scripts/setup_openram_<tech>.py for
OpenRAM.

8 November 2016 OpenRAM : An Open-Source Memory Compiler

31

Running OpenRAM as a User
• Main executable is openram.py

• Usage: openram.py [options] <config file>
• Example:

openram.py -n -o testsram -p /designdir/testsram –v
example_config.py

• Uses a configuration file for an SRAM instance: example_config.py

• Options to custom name the SRAM (-o testsram), specify a design directory
(-p /designdir/testsram), disable DRC/LVS (-n), specify SPICE simulator (-s
ngspice), increase verbosity (-v), override technology (-t scn3me_subm),
etc. -h for help.

8 November 2016 OpenRAM : An Open-Source Memory Compiler

32

What is an SRAM configuration file?
• Each SRAM you generate will contain a configuration file

that determines:
• The technology name (tech_name)
• The SRAM sizes:

• word size (word_size)
• number of words (num_words)
• number of banks (num_banks)

• Defines which modules to use if there are multiple alternatives for
architecture components. For example, 6T bitcell or 8T bitcell?

8 November 2016 OpenRAM : An Open-Source Memory Compiler

33

Example SRAM Configuration File
(example_config.py)
word_size = 1
num_words = 16
num_banks = 1

tech_name = "freepdk45"

decoder = "hierarchical_decoder"
ms_flop = "ms_flop"
ms_flop_array = "ms_flop_array"
…
tri_gate_array = "tri_gate_array"
wordline_driver = "wordline_driver"
replica_bitcell = "replica_bitcell"
bitcell = "bitcell"
delay_chain = "logic_effort_dc"

8 November 2016 OpenRAM : An Open-Source Memory Compiler

34

Sample Memory Interface Logic

• Drive data bus only when clock is low
• Ensures address is stable for writes
• Prevents bus contention
• Minimum clock period is twice

memory access time

Clock/E1
OE
WE

Address
Data Data for write

Address for write Address for read

Data read
Data can be latched here

Write cycle Read cycle

OpenRAM : An Open-Source Memory Compiler8 November 2016

VCC

FSM

Clock

DQ

Address
Read data

Write data

Control
(write, read, reset)

Data[m:0]

Address[n:0]

W
G

E1
SRAM

E2ext_chip_enable

ext_write_enable

ext_output_enable

ext_address

ext_data
QD

QD

int_data

Controller

[G. Hom, MIT]

35

OpenRAM Design Flow
OpenRAM’s framework is divided into front-end and back-end methodologies:

• Front-end has the compiler and the characterizer.
• Back-end generate annotated timing/power models using back-annotated

characterizations.

Memory Compiler
(Python)

Logical

LEF/FRAM GDSII Liberty (.lib)Spice/LVS Verilog

Front-End
Physical

Estimated
Timing/Power

Memory Characterizer
(Python)

Simulator
(e.g. ngspice, spectre)

Extractor
(e.g. Calibre)

Annotated
Timing/PowerLiberty (.lib) Spice

Memory Characterizer
(Python)

Back-End
Methodology

Front-End
Methodology

Simulator
(e.g. ngspice,

spectre)

Tech Library

User Specification
(word size, memory size, aspect ratio, etc.)

35

OpenRAM : An Open-Source Memory Compiler8 November 2016

36

Synchronous SRAM Memories
Clocking provides input
synchronization and
encourages more reliable
operation at high speeds

W3

A3

D3

CE

WE

CLK

Address

Data

R1

A1

R2 W5R4

A2 A4 A5

Q1 Q2 Q4 D5

difference between read and write timings
creates wasted cycles (“wait states”)

Data
Pins

Read
Logic

Write
Logic

Write Enable
Chip Enable

Output Enable

Memory
matrix

…

…

R
ow

 D
ecoder

Address
Pins

Sense Amps/Drivers
Column Decoder

long “flow-through” combinational
path creates high CLK-Q delay

OpenRAM : An Open-Source Memory Compiler8 November 2016

[G. Hom, MIT]

37

Zero Bus Turnaround (ZBT)
• The wait state occurs because:

• On a read, data is available after the clock edge
• On a write, data is set up before the clock edge

• ZBT (“zero bus turnaround”) memories change the rules for writes
• On a write, data is set up after the clock edge (so that it is read on the following edge)
• Result: no wait states, higher memory throughput

OpenRAM : An Open-Source Memory Compiler8 November 2016

CE

WE

CLK

Address

Data

A1 A2 A3 A4 A5

Q1 Q2 D3 Q4 D5

W3R1 R2 W5R4

Write to A3

requested
Data D3

loaded
Write to A5

requested
Data D5

loaded

[G. Hom, MIT]

38

SRAM Timing in Write Mode
• OpenRAM SRAM is a synchronous memory

with system clock (clk).
• Externally provided control signals are:

• Output Enable (OEb)
• Chip Select (CSb)
• Write Enable (WEb

• OpenRAM uses Zero Bus Turn-around
(ZBT) technique in timing.

• The ZBT enables higher memory
throughput since there are no wait states.

38

OpenRAM : An Open-Source Memory Compiler8 November 2016

39

SRAM Timing in Read Mode
• OpenRAM uses Replica Bit-Line

(RBL) structure for timing of the
sense amplifiers.

• The RBL turns on the sense
amplifiers at the exact time in
presence of process variations.

• Read occurs after the negative
edge, but read delay is measured
relative to positive edge.

39

OpenRAM : An Open-Source Memory Compiler8 November 2016

40

Outline
• Background on Memory Compilers
• OpenRAM Features
• OpenRAM Architecture and Circuits
• OpenRAM Usage
• OpenRAM Development
• How to port OpenRAM to a New Technology
• How to change the OpenRAM Circuits/Modules
• Conclusion

40

OpenRAM : An Open-Source Memory Compiler8 November 2016

41

OpenRAM Structure
• OpenRAM has an integrated, custom GDSII library (gdsMill) to read, write, and manipulate

GDSII files.
• To make the interfacing easier, OpenRAM implements a geometry wrapper class

(geometry.py). openram

sram

control_logic bank

bitcell_array

bitcell

writedriver_array

writedriver

hierarchical_decoder

inverter

senseamp_array precharge_array

precharge senseamp

nand2 nand3

columnmux_array

columnmux

tristate_array

tristate

design

hierarchy_spice
add_pin()

add_mod()
connect_pin()

sp_read()
sp_write()

.

.

hierarchy_layout
add_inst()

add_label()
add_rec()

gds_read()
gds_write()

.

.

geometry

GdsMill package

replica_bitline

replica_cell

msflop_array

msflop

Test
Units

Tech
files

globals Calibre
DRC/LVS 41

OpenRAM : An Open-Source Memory Compiler8 November 2016

42

Design Class (design.py)
• All of the previous classes are derived from the “design” class.

A design class has:
• Layout (hierarchy_layout.py)

• Instances, objects (shapes), width, height, pin locations
• Netlist (hierarchy_spice.py)

• Modules (other design classes), pins, connections

• A design class has numerous utility functions (e.g., write
GDS/SPICE, add wires, add pins, etc.)

• A design class can run DRC and LVS on itself.

8 November 2016 OpenRAM : An Open-Source Memory Compiler

43

Types of Design Cells
• Pre-made Designs

• Simplest but also the least technology portable.

• Must be hand-made for each new technology.

• Low-Level Designs
• Parameterized transistor class (ptx).

• Parameterized logic gate classes (inverter, nand2, nand3, nor2).

• High-Level Designs
• SRAM class instantiates the control logic module and the SRAM banks.

• Bank class does the bulk memory layout. It instantiates bit-cell arrays, address
decoders along with their precharge, sense amplifiers, and input/output data flops.

43

OpenRAM : An Open-Source Memory Compiler8 November 2016

44

Pre-made Cell Example: 6t cell
• From fab or self-made
• Layout is read from GDS file

• Boundary determines the size for placement.
• Pins are parsed from labels and shapes.

• Some pins may be connected by abutment!
• Netlist is read from SPICE file

• Pins are parsed from subckt
• Cells that are premade in OpenRAM

• 6t cell
• replica 6t cell
• sense amplifier
• flip-flop
• write driver
• tristate gate

8 November 2016 OpenRAM : An Open-Source Memory Compiler

width

he
ig

ht

45

Low-Level Class Example: ptx, nand2
• Parameterized classes

• Size, fingers, transistor type
• Ptx has optional contacted source/drain

• Subset of design rules are needed in the
tech.py file

8 November 2016 OpenRAM : An Open-Source Memory Compiler

46

High-Level Class Example: bitcell_array
• Can place instances of other design classes.
• Must generate its own layout and netlist.
• Uses utility functions:

• add_mod
• add_inst/connect_inst
• add_rect
• add_via/add_contact
• add_wire (auto vias)
• add_path (single layer wire)
• add_layout_pin

8 November 2016 OpenRAM : An Open-Source Memory Compiler

47

Technology and Tool Portability
• OpenRAM is technology independent by using a technology directory that includes:

• Technology’s specific information
• Subset of technology’s DRC rules and the GDS layer map
• Premade library cells (6T, sense amp, ..) to improve the SRAM density.

• For technologies that have specific design requirements, such as specialized well
contacts, the user can include helper functions in the technology directory. These will be
called through technology call-back mechanisms.

• OpenRAM provides a wrapper interface with DRC/LVS tools that allow flexibility of any
DRC/LVS tool, the default is Calibre nmDRC and nmLVS.

• DRC/LVS are performed at all levels of the design hierarchy to enhance bug tracking.
• DRC/LVS can be disabled for improved run-time or if tool is not available.

47

OpenRAM : An Open-Source Memory Compiler8 November 2016

48

OpenRAM Characterizer
Characterizer measures the timing/power characteristics through SPICE
simulation in 4 main steps:

• Generating the SPICE stimulus

• Running the circuit simulations

• Parsing the simulator’s output

• Producing the Liberty (.lib) file.

48

OpenRAM : An Open-Source Memory Compiler8 November 2016

Spice Model

Spice Simulator

.LIB Model

SRAM Netlist

OpenRAM
Memory Compiler

Memory
Characterizer

Spice Stimulus

49

Characterization
• Setup/Hold for Rise/Fall

• Bisection search using generic SPICE
syntax

• First, finds a feasible period by doubling
the time

• Starts with a “hint” from the technology file,
but not required.

• Min Period/Delay for Rise/Fall
• Measures data out delay while minimizing

the period
• First half of period is address decoding
• Second half of period is access time

• Performs a bisection search on the period
• Power Characterization

• Measures read and write during rise/fall
delay

8 November 2016 OpenRAM : An Open-Source Memory Compiler

50

OpenRAM Unit Tests
OpenRAM has the set of thorough regression tests implemented with the

Python unit test framework:

● Unit tests allow users to add features without worrying about breaking
functionality.

● Unit tests guide users when porting to new technologies. Unit tests
pass in both FreePDK45 and SCMOS.

● Every sub-module has its own regression test.

● There are also regression tests for memory functionality, library cell
verification, timing verification, and technology verification.

50

OpenRAM : An Open-Source Memory Compiler8 November 2016

51

Unit Test Organization
• Grouped bottom-up for porting:

• 01 and 02 test library cells (DRC & LVS of predesigned cells).

• 03 and 04 test parameterized gate cells (inv, nand, nor, contact, ptx…).

• 05 – 20 test the modules (bitcell-array, control-logic, sram…).

• 21 – 30 test characterization, liberty, .lef, .v files.

• Run all the tests in a technology with regress.py -t freepdk45
• Regression daemon script regress_daemon.py checks out from svn/git,

runs regression, and emails results.

51

OpenRAM : An Open-Source Memory Compiler8 November 2016

52

Running Unit Tests
• Can specify command-line options:

• Increase verbosity (-v)
• Must specify technology

• -t scn3me_subm or -t freepdk45
• Can run individual tests while debugging
• Results in OK, FAIL or ERROR
• Example:

• python tests/16_replica_bitline_test.py –t freepdk45

8 November 2016 OpenRAM : An Open-Source Memory Compiler

__
|==|
|========= Running Test for: =========|
|========= freepdk45 =========|
|========= tests/16_replica_bitline_test.py =========|
|==|
.
--
Ran 1 test in 5.282s

OK

53

Outline
• Background on Memory Compilers
• OpenRAM Features
• OpenRAM Architecture and Circuits
• OpenRAM Usage
• OpenRAM Development
• How to port OpenRAM to a New Technology
• How to change the OpenRAM Circuits/Modules
• Conclusion

53

OpenRAM : An Open-Source Memory Compiler8 November 2016

54

Port OpenRAM to a New Tech – 1st step
Setup the technology file in a tech directory (e.g. freepdk45/tech/tech.py):
• Technology name (e.g. freepdk45)
• GDS layer map
• GDS library files (bitcell, sense-amp, write-driver,..)
• Design rules (DRC/LVS test setup)
• SPICE info (transistor name and model,..)
• SPICE stimulus variable (voltage, frequency,…)
• SRAM signal names (DATA, ADDR, clk,…)

54

OpenRAM : An Open-Source Memory Compiler8 November 2016

55

Port OpenRAM to a New Tech – 2nd step
• Setup the GDS library by custom designing library cells (bitcell.gds, sense-

amp.gds, …).
• Setup the SP library by creating the SPICE netlist for designed cells

(bitcell.sp, sense-amp.sp, …).
• Unit test 01_drc checks the DRC for layouts in GDS library.
• Unit test 02_lvs checks the LVS for layouts in GDS library versus their

SPICE netlist in SP directory.

55

OpenRAM : An Open-Source Memory Compiler8 November 2016

6T	cell	SPICE	netlist	
in	SP	library

6T	cell	gds layout	in	
GDS	library

56

Port OpenRAM to a New Tech – 3rd step
• Make sure following tests generate clean DRC/LVS outputs:

• 03_ptx: generates a single/multi finger transistor (nmos/pmos) based on the technology
information.

56

Single-finger NMOS Triple-finger PMOS

OpenRAM : An Open-Source Memory Compiler8 November 2016

57

Port OpenRAM to a New Tech – 3rd step
• 03_wire: generates a metal wire between a set of points for a given layer set.

• 03_path: generates a metal path between a set of points for a given layer type.

• 03_contact: generate contact array in different size and type (poly-contact, via,..).

57
Wire for (M2, Via1, M1) Path for M1 Contacts in different sizes

OpenRAM : An Open-Source Memory Compiler8 November 2016

58

Port OpenRAM to a New Tech – 3rd step
• 04_pinv: generates a parametrically sized inverter using ptx.

• 04_nand_2: generates a parametrically sized 2 input nand gate using ptx.

• 04_nand_3: generates a parametrically sized 3 input nand gate using ptx.

• 04_nor_2: generates a parametrically sized 2 input nor gate using ptx.

58Inverter NAND2 NAND3 NOR2

OpenRAM : An Open-Source Memory Compiler8 November 2016

59

Port OpenRAM to a New Tech – 4th step
Following tests generate array of provided layouts in GDS library or parameterized cells:

• 05_bitcell_array: generates a mxn bitcell array.
• 06_hierarchical_decoder: generates a hierarchical decoder with inverter and nand gates.
• 07_column_mux_array: generates a column multiplexer with bit interleaving structure.

593x3 bitcell_array 2:4 decoder

4:1 column_multiplexer

OpenRAM : An Open-Source Memory Compiler8 November 2016

60

Port OpenRAM to a New Tech – 4th step
• 08_prechage_array: generates a 1xm parameterized precharge cell array.
• 09_ sense_amp_array: generates a 1xm sense amp array.
• 10_write_driver_array: generates a 1xm write driver array.
• 11_ms_flop_array: generates master-slave flipflop arrays for data, address and controls.
• 15_tri_gate_array: generates a 1xm tri_gate array for bidirectional data bus.

601x3 precharge_array 1x3 sense_amp_array
1x4 write_driver_array

(there is column_mux in array)

OpenRAM : An Open-Source Memory Compiler8 November 2016

61

Port OpenRAM to a New Tech – 5th step
Following tests generate the control logic:

• 14_logic_effort: generates chain of inverters.

• 16_replica_bitline: generates the replica bitline
using bitcell, replica cell and inverter chain.

• 15_control_logic: generates the final control logic.

61Control_logic (master-slave FF, Nand, Nor, Inverter and RBL) Replica Bitline

OpenRAM : An Open-Source Memory Compiler8 November 2016

62

Port OpenRAM to a New Tech – 6th step
Following test generate the bank array:

• 19_bank: generates a non-control memory bank
by connecting and routing following modules:

• Bitcell-array
• Sense-amp-array
• Write-driver-array
• Hierarchical-decoder
• Wordline-driver
• Precharge-array
• Column-multiplexer (if needed)
• MS-flipflop-array
• Trigate-array

6232x32 bit bank with a 2:1 column_multiplexer

OpenRAM : An Open-Source Memory Compiler8 November 2016

63

Port OpenRAM to a New Tech – 6th step
Following tests generate SRAM array.
• 20_sram_1bank: connects and route one memory bank to control logic
• 20_sram_2bank: generates a double bank SRAM array.
• 20_sram_4bank: generates a quad bank SRAM array.

63Single bank SRAM Dual bank SRAM Quad bank SRAM

OpenRAM : An Open-Source Memory Compiler8 November 2016

64

Port OpenRAM to a New Tech – 7th step
Use characterizer and a SPICE simulator to ensure that characterization works:

21_timing_delay: measures the timing delay of the SRAM.
21_timing_hold/setup: measures the setup/hold timing of flip-flops.
23_lib_sram: generates a lookup-table liberty file for synthesis.

64

OpenRAM : An Open-Source Memory Compiler8 November 2016

65

Port OpenRAM to a New Tech – 7th step

Confirm that .lef file and verilog models
generate correctly:

24_lef_sram: generates a LEF file of
SRAM for place and route.

25_verilog_sram: generates a Verilog
model for synthesis and place & route.

65

OpenRAM : An Open-Source Memory Compiler8 November 2016

Note: The LEF should be manually inspected in your P&R tool.

66

Port OpenRAM to a New Tech – 8th step
• If all the previous tests pass you can now make “any” size of SRAM array and

generate gds, SPICE, lib, LEF, Verilog, … by running openram.py.

• Copy the config_20_freepdk45.py for each size memory and modify the
size and technology:

• tech_name
• word_size
• num_words
• num_banks

66

OpenRAM : An Open-Source Memory Compiler8 November 2016

67

Outline
• Background on Memory Compilers
• OpenRAM Features
• OpenRAM Architecture and Circuits
• OpenRAM Usage
• OpenRAM Development
• How to port OpenRAM to a New Technology
• How to change the OpenRAM Circuits/Modules
• Conclusion

67

OpenRAM : An Open-Source Memory Compiler8 November 2016

68

Customize OpenRAM Circuits – 1st step
Want to generate an 12T SRAM array instead of a 6T?!!
• First, add the 12T bitcell layout to GDS library:

technology/freepdk45/gds_lib/cell_12t.gds

68

OpenRAM : An Open-Source Memory Compiler8 November 2016

Make sure it
has a
Boundary
layer and
pin labels.

69

Customize OpenRAM Circuits – 2nd step
• Add the 12T SPICE netlist to

SP library:
technology/freepdk45/sp_lib/
cell_12t.sp

8 November 2016 OpenRAM : An Open-Source Memory Compiler

******* "cell_12t” **********
.SUBCKT cell_12t BL BR WL sel vdd gnd

M1 Q QB vdd vdd pfet L=0.04u W=0.1u
M2 QB Q vdd vdd pfet L=0.04u W=0.1u
M3 Q QB gnd gnd nfet L=0.04u W=0.1u
M4 QB Q gnd gnd nfet L=0.04u W=0.1u
M5 L Q gnd gnd nfet L=0.04u W=0.1u
M6 R QB gnd gnd nfet L=0.04u W=0.1u
M7 L WL vdd vdd pfet L=0.04u W=0.1u
M8 R WL vdd vdd pfet L=0.04u W=0.1u
M9 Q sel L gnd nfet L=0.04u W=0.1u
M10 QB sel R gnd nfet L=0.04u W=0.1u
M11 L WL BL gnd nfet L=0.04u W=0.1u
M12 R WL BR gnd nfet L=0.04u W=0.1u

.ENDS cell_12t

70

Customize OpenRAM Circuits – 3rd step
• Create a new bitcell module that uses the 12T cell:

cell_12t.py

8 November 2016 OpenRAM : An Open-Source Memory Compiler

import design
from tech import cell
import debug

class cell_12t:
"""
A single bit 12T cell.
""”
pins = ["BL", "BR", "WL", "vdd", "gnd"]
chars = utils.auto_measure_libcell(pins, "cell_12t", GDS["unit"],layer["boundary"])

def __init__(self, name="cell_12t"):
design.design.__init__(self, name)
debug.info(2, "Create bitcell object")
self.width = bitcell.chars["width"]
self.height = bitcell.chars["height"]

71

Customize OpenRAM Circuits – 4th step
• Change an SRAM configuration file to refer to your new 12T

module as the bitcell: config_example_12t.py

8 November 2016 OpenRAM : An Open-Source Memory Compiler

word_size = 32
num_words = 128
num_banks = 1

…
tri_gate_array = "tri_gate_array"
wordline_driver = "wordline_driver"
replica_bitcell = "replica_cell_12t”
bitcell = ”cell_12t"
delay_chain = "logic_effort_dc"

Oh, replica too!!

72

Customize OpenRAM Circuits – 5th step
• Repeat for replica_bitcell.py.

• Add the 12T replica bitcell layout to GDS library:
technology/freepdk45/gds_lib/replica_cell_12t.gds

• Add the 12T SPICE replica bitcell netlist to SP library:
technology/freepdk45/sp_lib/replica_cell_12t.sp

• Create a new replica bitcell module that uses the 12T cell:
replica_cell_12t.py

• Change an SRAM configuration file to refer to your new 12T replica
module as the replica_bitcell

• Then, make sure all the unit tests all pass!

72

OpenRAM : An Open-Source Memory Compiler8 November 2016

73

Customize OpenRAM Modules – 1st Step
• What if you want to implement a new module? Let’s look at

the bitcell_array.py class.

8 November 2016 OpenRAM : An Open-Source Memory Compiler

import debug
import design
from tech import bitcell
from vector import vector
from globals import OPTS

class bitcell_array(design.design):
"""
Creates a rows x cols array of memory cells. Assumes bit-lines
and word line are connected by abutment.
Connects the word lines and bit lines.
"""

74

Customize OpenRAM Modules – 2st Step
• Top level: loads sub-modules then creates netlist/layout and

verifes.

8 November 2016 OpenRAM : An Open-Source Memory Compiler

def __init__(self, name, cols, rows):
design.design.__init__(self, name)
debug.info(1, "Creating {0} {1} x {2}".format(self.name, rows, cols))
self.column_size = cols
self.row_size = rows

c = reload(__import__(OPTS.config.bitcell))
self.mod_bitcell = getattr(c, OPTS.config.bitcell)

self.add_pins()
self.create_layout()
self.add_labels()
self.DRC_LVS()

75

Customize OpenRAM Modules – 3rd Step
• Dynamically add all the pins to the netlist based on the size.

8 November 2016 OpenRAM : An Open-Source Memory Compiler

def add_pins(self):
for col in range(self.column_size):

self.add_pin("bl[{0}]".format(col))
self.add_pin("br[{0}]".format(col))

for row in range(self.row_size):
self.add_pin("wl[{0}]".format(row))

self.add_pin("vdd")
self.add_pin("gnd")

76

Customize OpenRAM Modules – 4th Step
• Place all the instances of the cell module and logically

connect them.

8 November 2016 OpenRAM : An Open-Source Memory Compiler

self.cell = self.mod_bitcell()
self.add_mod(self.cell)
…
xoffset = 0.0
for col in range(self.column_size):

for row in range(self.row_size):
name = "bit_r{0}_c{1}".format(row, col)

…
self.add_inst(name=name,

mod=self.cell,
offset=[xoffset, tempy],
mirror=dir_key)

self.connect_inst(["bl[{0}]".format(col),
"br[{0}]".format(col),
"wl[{0}]".format(row),
"vdd", "gnd"])

Note: In this cell, all
connections are physically
made by abutment!

77

Customize OpenRAM Modules – 5th Step
• Add labels for LVS and store pin offsets for higher level

8 November 2016 OpenRAM : An Open-Source Memory Compiler

offset = vector(0.0, 0.0)
for col in range(self.column_size):

offset.y = 0.0
self.add_label(text="bl[{0}]".format(col),

layer="metal2",
offset=offset + vector(cell_6t["BL"][0],0))

self.add_label(text="br[{0}]".format(col),
layer="metal2",
offset=offset + vector(cell_6t["BR"][0],0))

self.BL_positions.append(offset + vector(cell_6t["BL"][0],0))
self.BR_positions.append(offset + vector(cell_6t["BR"][0],0))

78

Customize OpenRAM Modules – 6th Step
• Compute your height and width

8 November 2016 OpenRAM : An Open-Source Memory Compiler

self.height = self.row_size * self.cell.height
self.width = self.column_size * self.cell.width

79

Outline
• Background on Memory Compilers
• OpenRAM Features
• OpenRAM Architecture and Circuits
• OpenRAM Usage
• OpenRAM Development
• How to port OpenRAM to a New Technology
• How to change the OpenRAM Circuits/Modules
• Conclusion

79

OpenRAM : An Open-Source Memory Compiler8 November 2016

80

Generated Layout by OpenRAM for a Multiport
(6R/2W) SRAM in 32 nm SOI CMOS Technology

80

OpenRAM : An Open-Source Memory Compiler8 November 2016

	

Read Port #1 Read Port #2

Read Port #3 Read Port #4 Read Port #5 Read Port #6

Write Port #1 Write Port #2

Cross-Coupled
Bistable Circuitry
and Read Buffers

5.2 um

1.
6

um

	

VDD

WWL1

Q
/Q

WWL2

RWL1

RWL2

RWL3

RWL6

RWL5

RWL4

RBL1RBR1

RBL2RBR2

RBL3RBR3

RBL4RBR4

RBL5RBR5

RBL6RBR6

WBR1WBL1

WBR2WBL2W
ri

te
 P

o
rt

s
R

e
a

d
 P

o
rt

s

C
ro

s
s

-C
o

u
p

le
d

B

is
ta

b
le

 C
ir

c
u

it
ry

a

n
d

 R
e

a
d

 B
u

ff
e

rs

	

12
8.

87
 u

m

382.34um

D
ec

od
er

 5
 -

8

D
ec

od
er

 1
 -

4

Input Address FF Array

Control
Logic Precharge Array & Sense Amplifier Array

Input Data FF Array, Write Driver Array
& Sense Amplifier Array

64 x 64
Bitcell Array

Input Address FF Array

Control Logic

	

Multi-Port
Bitcell Array

(64 x 64)

Sense Amp & Write Driver Array

Input Data Flip-Flop Array

Precharge and Sense Amp Array

P
re

de
co

de
r

P
re

de
co

de
r

P
re

de
co

de
r

P
re

de
co

de
r

P
re

de
co

de
r

P
re

de
co

de
r

P
re

de
co

de
r

P
re

de
co

de
r

D
ec

od
er

 R
6

D
ec

od
er

 R
4

D
ec

od
er

 R
1

D
ec

od
er

 W
1

D
ec

od
er

 R
2

D
ec

od
er

 R
3

D
ec

od
er

 R
5

D
ec

od
er

 W
2

Control
Logic

FF FF FF FF FF FF FF FF

Control Logic

Input Address Flip-Flop ArrayInput Address Flip-Flop Array

81

Multiple Bank Results

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Single bank SRAM Dual bank SRAM Quad bank SRAM

82

Timing and Density Results

82

OpenRAM : An Open-Source Memory Compiler8 November 2016

83

Comparison with Fabricated SRAMs
Reference Feature Size Technology Density

[Mb/mm2]

IEEE-VLSI’08 65 nm CMOS 0.7700

JSSC’11 45 nm CMOS 0.3300

JSSC’13 40 nm CMOS 0.9400

OpenRAM 45 nm FreePDK45 0.8260

JSSC’92 0.5 um CMOS 0.0036

JSSC’94 0.5 um BICMOS 0.0020

JSSC’99 0.5 um CMOS 0.0050

OpenRAM 0.5 um SCMOS 0.0050 83

OpenRAM : An Open-Source Memory Compiler8 November 2016

84

Conclusions
● The main motivation behind OpenRAM is to promote memory-related research in

academia and provides a platform to implement and test new memory designs.

● OpenRAM is open-sourced, flexible, and portable and can be adapted to various
technologies.

● OpenRAM generates the circuit, functional model, and layout of variable-sized
SRAMs and provides a memory characterizer for synthesis timing/power models.

● We are also continuously introducing new features, such as non-6T memories,
variability characterization, word-line segmenting, characterization speed-up, and
a graphical user interface (GUI).

● We hope to engage an active community in the future development of OpenRAM.

84

OpenRAM : An Open-Source Memory Compiler8 November 2016

85

Future Work
• Porting to FreePDK15
• Multi-port memories
• Internal clock buffers
• Variability analysis
• Create a maze router
• Alternate cells: 8T? 10T?

8 November 2016 OpenRAM : An Open-Source Memory Compiler

86

Acknowledgment
• Many thanks to National Science Foundation

• This material is based upon work supported by the National Science
Foundation under Grant No. CNS-1205685.

• We give thanks to other students who have contributed to
the project, as well.

• We hope many will use and contribute to project!

8 November 2016 OpenRAM : An Open-Source Memory Compiler

87

Reminder: Getting OpenRAM
• https://github.com/mguthaus/OpenRAM

• git clone https://github.com/mguthaus/OpenRAM.git

• https://openram.soe.ucsc.edu/

• Contact:
• Prof. Matthew Guthaus (mrg@ucsc.edu)
• Samira Ataei (ataei@okstate.edu)
• Prof. James Stine (james.stine@okstate.edu)

8 November 2016 OpenRAM : An Open-Source Memory Compiler

OPENRAM
AN OPEN-SOURCE MEMORY COMPILER
Matthew R. Guthaus1, James E. Stine2, Samira Ataei2

Brian Chen1, Bin Wu1, Mehedi Sarwar2

1	VLSI	Design	and	Automation	Group	at	UCSC	
2	VLSI	Architecture	Research	Group	at	Oklahoma	State	University

8 November 2016 OpenRAM : An Open-Source Memory Compiler

