2016 INTERNATIONAL (|
CONFERENCEON g |

COMPUTFR—A[DFD
OPENRAM =

AN OPEN-SOURCE MEMORY COMPILER

VLSI-DA at University of California Santa Cruz
VLSIARCH at Oklahoma State University

UNIVERSITY OF CALIFORNIA

. A,,_."
- 1l \
INRY
i
(@ i
% 3 ey i
Tt g I
\¥ VA
AN < S
A N\

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Contributors

- Presenters
- Prof. Matthew R. Guthaus (mrg@ucsc.edu)
- Samira Ataei (ataei@ostatemail.okstate.edu)

- Authors

- Prof. Matthew R. Guthaus, Prof. James E. Stine, Samira Ataei, Brian
Chen, Bin Wu, Mehedi Sarwar

- Other student contributors

- Jeff Butera, Tom Golubev, Seokjoong Kim, Matthew Gaalswyk, and
Son Bui

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Outline

Background on Memory Compilers
OpenRAM Features

OpenRAM Architecture and Circuits

OpenRAM Usage

OpenRAM Development

How to port OpenRAM to a New Technology
How to change the OpenRAM Circuits/Modules

Conclusion

Why an Open Source Memory Compiler is needed?

SRAMs have become a standard component in SoC, ASIC, and
microprocessor designs and play a significant role in overall system
performance and costs.

Regular structure of memories leads to automation, but developing this with
multiple technologies and tool methodologies is challenging.

Most academic ICs design are limited by the availability of memories.

Custom memory design can be a tedious and time-consuming task and may
not be the intended purpose of the research.

The lack of a customizable compiler makes it difficult for researchers to
prototype and verify circuits beyond a single row or column of memory cells.

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Memory Compiler Options

Contemporary memory compilers usually allow customers to view front-
end simulation and not back-end features unless with a licensing fee.

Globalfoundries: offers front-end PDKs for free, but not back-end views.

Virage Logic: provides a dashboard compiler that selects from a pre-designed

configurations. .:%5:. FARADAY

8 Tecunovosr comromamon
Faraday Technologies: provides a black box design kit for UMC technologies. @
Dolphin Technology: offers closed-source compilers for TSMC, UMC, and IBM.

Dolphin Technology

FabMem: (NCSU research groups) is able to create small arrays, but it is highly
dependent on the Cadence design tools.

Synopsys Generic Memory Compiler: is not recommended for fabrication
since the supported technologies are not real. Syn[]PS\/S®

8 November 2016 OpenRAM : An Open-Source Memory Compiler

OpenRAM Motivation

- We believe in OpenRAM
- It is free and open-source
- Helpful to community
- Integrates into computer architecture and digital systems easily.

- Allows researchers to modify and use for existing SRAM
architectures and any memory design (even memresistors).

- We also believe in community

- We want circuits and system research as well as EDA to prosper
- Academic research in memory is important!

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Outline

Background on Memory Compilers

OpenRAM Features

OpenRAM Architecture and Circuits

OpenRAM Usage

OpenRAM Development

How to port OpenRAM to a New Technology
How to change the OpenRAM Circuits/Modules

Conclusion

8 November 2016 OpenRAM : An Open-Source Memory Compiler
“@

OpenRAM Features N
python” \ios)s hekatie®

e OpenRAM is implemented in the Python programming language.

e OpenRAM provides reference circuit and physical implementations in a non-
fabricable generic 45nm technology (FreePDK45) and fabricable Scalable
CMOS (SCMOS) by non-confidential MOSIS foundry services.

e OpenRAM includes a characterizer to generate the timing/power results in a
Liberty (lib) file.

e OpenRAM generates GDSII layout data, SPICE netlist, Verilog model,
DRC/LVS verification reports and .lef file for place and route.

e OpenRAM is independent of any specific commercial tool.

e OpenRAM is completely user-modifiable since all source code is open source.

8 November 2016 OpenRAM : An Open-Source Memory Compiler

What is Python?

- Object-oriented rapid prototyping language
- Not just a scripting language
- Not just another Perl
- Rich set of libraries
- numpy, SciPy, etc.
- Easy to learn, read, and use
- Extensible (add new modules)
- C/C++/Fortran/whatever
- Java (through Jython)

- Embeddable in applications

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Engineering properties of Python

- Open Source (OSI Certified)

- Copyrighted but use not restricted
- No "viral" license
- Owned by independent non-profit, PSF

- Mature (10+ years old)
- Supportive user community
- Plenty of good books and references

- Simple design and easy to learn
- Reads like “pseudo-code”
- Suitable as first and last language

8 November 2016 OpenRAM : An Open-Source Memory Compiler

High-Level Properties

- Extremely portable
- Unix/Linux, Windows, Mac, PalmOS, WindowsCE, RiscOS, VxWorks,
QNX, OS/2, OS/390, AS/400, PlayStation, Sharp Zaurus, BeOS,
VMS...
- Compiles to interpreted byte code
- Compilation is implicit and automatic
- Memory management automatic
- Reference counting for most situations
- Garbage Collection added for cycle detection

- “Safe”. no core dumps due to your bugs

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Language Properties

- Everything is an object

- Packages, modules, classes, functions
- Exception handling

- Dynamic typing, polymorphism

- Static scoping

- Operator overloading

- Indentation for block structure
- Otherwise conventional syntax

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Outline

Background on Memory Compilers

OpenRAM Features

OpenRAM Architecture and Circuits
OpenRAM Usage

OpenRAM Development

How to port OpenRAM to a New Technology
How to change the OpenRAM Circuits/Modules

Conclusion

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Memory Organization

/ decod% row select logic

J - % - —
N CELL B 32X 8 MX 1
. . ARRAY .
* * * 5J(J{a 20+
LT B ador deta agdr data

oy LT

address WE bit lines
- Special circuit tricks are used for the cell array to improve storage density.
- RAM/ROM naming convention:
- examples: 32 X 8, "32 by 8" => 32 8-bit words
- 1M X 1, "1 meg by 1" => 1M 1-bit words
- Standard address, data and control signal names

8 November 2016

OpenRAM : An Open-Source Memory Compiler

Memory Array Architecture

S

2LxM memory

mall cells — small MOSFETs— small dV on bit line (bl)
oK Bit Line
/ — :
X > - X Storage Cell |
2 |— [Word Line 2K row
@] > by
8 > Mx2K column
% cell array

M*2K

| : Amplify swing to
rail-to-rail amplitude

Ao Column Decode / i
Aml <+— Selects appropriate word

(i.e., multiplexer)

Input-Output
(M bits)

8 November 2016

Using External Memories

OpenRAM : An Open-Source Memory Compiler

Output Enable gates the chip’s tristate driver

] Write |—— Write enable
By Logic ;
) Chip Enable
Address é Memory Matrix ’
8 Data
g Pins
S~
| | oo [Write enable
- ogic
Sense Amps/Drivers — Output Enable
Column Decoder /
A
- Address pins drive row and column ¢
decoders

- Data pins are bidirectional, shared by

reads and writes

Write Enable sets the memory’s read/write mode

Chip Enable/Chip Select acts as a “master switch”

Tri-state Driver

enable

in out
If enable=0
out=27

If enable =1
out =in

8 November 2016 OpenRAM : An Open-Source Memory Compiler

What's right/wrong with SRAM?

- It is currently everywhere and will be everywhere.)
- It is fast and efficient

- Top of the food chain
- Small footprint

- What's wrong with it?
- It is not that easy to build without time and experience.

- It is part of every computer system but usually absent from courses
because of time to implement within course.

- This signifies meaningful research is sometimes absent in this area,
because we cannot teach people how to use it!

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Static Random Access Memory (SRAM)

- SRAM is the most widely used form of on-chip memory RAMSs.

- Denser than flip-flops Pracharge Crouie
- Compatible with standard CMOS process 4 i
- Faster than DRAM i
- Easier to use than DRAM__.--=="="=~ . T e
//’ WL N —,/fq’
4 . . 1.1
/ VDD J_ ’,¢‘ T T
Y4 J_ M2 l’_ 4E4 " Column Decoder
|'] I M5| Q = M6 ‘I T T
l‘ M1 I_ _I q3 [’ Sense Amplifier
‘\ U T T
\\ _ ,/' Write Driver
\\\\BL - B,R’ ,, Input/Qutput Data g

8 November 2016

oT SRAM Cell

v Simple with Differential Structure
v~ Small Layout Area

v Fast Read Operation

X High Leakage

X Write Half-Select Disturbance

X Low Stability at Low Voltages

OpenRAM : An Open-Source Memory Compiler

WL

BL

VDD

L |
M2 F_ _ciM4Q
Tl &
YO |y W

Twe 4

BR

8 November 2016 OpenRAM : An Open-Source Memory Compiler

SRAM Cell (The 6T Cell) _
T 1T

- - - — -

"1 ! » Q ‘ Q

Tl 2t L
 J
YO Y Write: 1) Set BL, BR to (0,Vpp) or (Vpp,0)
1 2) Enable WL (= Vpp)

Read: 1) Enable WL (=Vpp).
- 2) Sense a small differential swing on BL/BR

- State held by cross-coupled inverters (M1-M4)
- Retains state as long as power supply turned on
Feedback must be overdriven to write into the memory

8 November 2016

OpenRAM : An Open-Source Memory Compiler

Read/Write Path in SRAM

» Data path for read operation

Row
Decoder

Sense
Amplifier

Output

Data

» Data path for write operation

Row
Decoder

Y

Write Driver

Input
¢ Data

Input Address —

Precharge Circuite

Row
becoder

6T
Cell

Cell Array

2

Column Decoder

Sense Amplifier

Write Driver

v Input/Output Data

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Latch-Based Sense Amplifier

- Bitline capacitors and resistance is significant for large array.
- Cannot easily change R, C, but can change bitline swing

~ N o

[
—] I—_l 5L
Sense enable Sense clock
| |
Differential Pair Sense Ampilifier Latch-based Sense Amplifier
v" Requires no Sense clock. v Saves power by using Sense clock.

(Always dissipates static Powey Qlas isolation transistors. /

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Sense Amplifier Timing

TgL : Time that bitline Voltage is sufficient for sensing.
Tsa - Time that sense-amp activates. (a)
(a) Correct sensing when Tg_ < Tga .

(b) Wrong sensing when Tg; > Tga.

(c) Timing margin in SRAM design. A

-
P 2
-
-®

Time

\ 4

Bitlines

(b)

Decoder

Time

\ 4

Timing Margin

[

BS — >4 >0-- > So—> Sense amps

"""""""""""" (c)
X The inverter delay does not track the memory .
cell delay over all process/environment conditions. T < T Time

.
.
.
.
.
.
.
.

e

1

A}
L)
A)

\ 4

8 November 2016

OpenRAM : An Open-Source Memory Compiler

Replica Bitline (RBL) Technique

AReplica Technique for Wordline and Sense Control in Low-Power SRAMSs” B. Amrutur and M. Horowitz, IEEE JSSC 1998

Memory cells drive

bs

Word line driver

DD wl

gwl BB,

delay of replica bitline.

By B,

v PVT variation delay
shift is same for bitlines
and replica bitline.

Replica bitli
L[]
Replica
cell

fwl [
o} rbl

A

"'I

2
:

> Memory cells drive

delay of main bitlines.

\I S 1
Sense clock

>/

RBL is fully discharged to
generate the SA enable signal.

Replica bitline

T

Replica cell l
>

8 November 2016

Replica Bitline (RBL) Technique

» Height of replica bitline (r) is a fraction of main bitline height (h) and this
fraction is determined by the required bitline swing for proper sensing.

* Replica Cell (RC) in RBL is same as memory cell and is hardcoded to always
save zero value.

Memory Block

R

|
|
|
|
|
|
|
|
|
|
|
|
|
|
1

v

OpenRAM : An Open-Source Memory Compiler

h

BL|is discharged
by |(r/h)% when
SA is enabled.

v

i
v BL
0"-_,:
Ref™
)
)

: Voo :
‘:'::":BL BRE OEb
6T : i

$Vos
----------- \7\/ -L------------
Voo m

— BR; RBL
HoY SCLK =

OEb

“\\ Optimum SAE
Timing

8 November 2016 OpenRAM : An Open-Source Memory Compiler

OpenRAM SRAM Architecture

Bank . Precharge Array
SRAM Major blocks:

« Bit-cell Array (6T SRAM Cell) B
* Hierarchical Address Decoder 2;»: ~[eonto § E Bit Cell Array
« Wordline Driver oo — & [° 5
« Column Multiplexer web —lBitine
 Bitline Precharger P'ede‘?d:if— Column Mux
» Latch-type Sense Amplifier Address Bus - Sense Amp Array
* Tri-state Write Driver K RS Wite Driver Array
« Control Logic with Replica Bitline —— 11 Input Data MS-Flop Array

Bank Select | Array | 17 Tri Gate Array

Bidirectional n

Data Bus

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Outline

Background on Memory Compilers

OpenRAM Features

OpenRAM Architecture and Circuits

OpenRAM Usage

OpenRAM Development

How to port OpenRAM to a New Technology
How to change the OpenRAM Circuits/Modules

Conclusion

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Getting OpenRAM

- https://github.com/mguthaus/OpenRAM

- git clone https://github.com/mguthaus/OpenRAM.git
- https://openram.soe.ucsc.edu/

- License: GNU General Public License v3

C

8 November 2016 OpenRAM : An Open-Source Memory Compiler

iependencies

- Python 2.7

- numpy: http://www.numpy.org/

SPICE (one or more)

- Ngspice: http://ngspice.sourceforge.net/
. HgPICE: from Synopsys

DRC/LVS (necessary for porting technologies)

- Calibre nmDRC nmLVS: From Mentor Graphics
- Future: magic and netgen

Technology PDK (one or more)

- FreePDK45: http://www.eda.ncsu.edu/wiki/FreePDK
- SCMOS: https://www.mosis.com/pages/design/flows/design-flow-scmos-kits

Layout viewer/editor (optional)

- LayoutEditor: http://www.layouteditor.net/
- GLADE: http://www.peardrop.co.uk/
- Magic: http://opencircuitdesign.com/magic/

8 November 2016 OpenRAM : An Open-Source Memory Compiler

OpenRAM Directory Structure
- compiler : OpenRAM compiler (OPENRAM_HOME)

- Main source code of compiler in this directory.

- compiler/characterizer : timing characterization code
- compiler/gdsMill : gds reader/writer

- compiler/tests : unit tests

- technology : Technology libraries (OPENRAM_TECH)
- technology/freepdk45 : Library for freepdk45 technology
- technology/scn3me_subm : Llibrary SCMOS technology
- technology/setup_scripts - setup scripts for your PDK

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Basic Environment Setup

- OpenRAM has two environment variables:

- OPENRAM_TECH points to a directory where all of your technology
files reside. This allows proprietary technologies in a separate location
with access control.

- OPENRAM_HOME points to the directory of your OpenRAM source
code. This allows a read-only installation if desired.

- Your PDK for a specific technology
- Thisis set up in
$OPENRAM_TECHY/setup_scripts/setup_openram_<tech>.py for
OpenRAM.

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Running OpenRAM as a User

- Main executable is openram.py

- Usage: openram.py [options] <config file>
- Example:

openram.py -n -o testsram -p /designdir/testsram -v
example config.py

- Uses a configuration file for an SRAM instance: example_config.py

- Options to custom name the SRAM (-o testsram), specify a design directory
(-p /designdir/testsram), disable DRC/LVS (-n), specify SPICE simulator (-s
ngspice), increase verbosity (-v), override technology (-t scn3me_subm),
etc. -h for help.

8 November 2016 OpenRAM : An Open-Source Memory Compiler

What is an SRAM configuration file?

- Each SRAM you generate will contain a configuration file

that determines:

- The technology name (tech_name)

- The SRAM sizes:
- word size (word_size)
- number of words (num_words)
- number of banks (num_banks)

- Defines which modules to use if there are multiple alternatives for
architecture components. For example, 6T bitcell or 8T bitcell?

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Example SRAM Configuration File
(example config.py)

word size

num words = 16

num banks = 1

tech name = "freepdk45"

decoder = "hierarchical decoder"

ms flop = "ms flop"

ms flop array = "ms flop array"
Eri_gate_array = "tri gate array"
wordline driver = "wordline driver"
replica bitcell = "replica bitcell"
bitcell = "bitcell"

delay_chaln = "logic effort dc"

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Sample Memory Interface Logic

Write cycle Read cycle
Clock/E1 / ‘]
OE] :\
WE \ /
Address | X Addres_s.:-:for write X Address.:f_for read X |
Data '\ Data forwritef;
A Data can be latched here
- Drive data bus only when clock is low Controller T =
- Ensures address is stable for writes gc'):frkol;-e:;ilﬁeeZ:Zﬁe o
- Prevents bus contention (wite, read, resel) e G
- Minimum clock period is twice :{Ve;::::: Datalm:0]
memory access time Adress e pcitessin
[G. Hom, MIT] *

8 November 2016 OpenRAM : An Open-Source Memory Compiler

OpenRAM Design Flow

OpenRAM'’s framework is divided into front-end and back-end methodologies:
* Front-end has the compiler and the characterizer.
» Back-end generate annotated timing/power models using back-annotated
characterizations. User Specification

(word size, memory size, aspect ratio, etc.)
'
Front-End Memory Compiler | _—" Tech Library

Methodology (Python)

Simulator
Logical Front-End \ Memory Characterizer (e.g. ngspice,
Physical Python) > spectre)
Ece/LVS VerﬂE E/FRAM GDsII | | Liberty (.lib) I Estimated
Timing/Power

Simulator Memory Characterizer . Extractor
(e.g. ngspice, spectre) (Python) . (e.g. Calibre)

Back-End . Annotated
Methodology | Liberty (lib) Spice ITiming/Power

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Synchronous SRAM Memories

Pl
Clocking provides input Address S
Pins 8

synchronization and

encourages more reliable
operation at high speeds

difference between read and write timings
creates wasted cycles (“wait states”)

Column Decoder

"\

Write Enable
Chip Enable

Data
Pins

Read

Logic —D— Output Enable

long “flow-through” combinational
path creates high CLK-Q delay

- Ry R \ Ws Ry Ws
cCE 1 1 J
WE \ 1| I
CLK —\ B \ \ \ \

Address { A X A .‘-)—m.'-

[G. Hom, MIT]

Data ———— (@ (0. —Da)———

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Zero Bus Turnaround (ZBT)

- The wait state occurs because:
- On aread, data is available after the clock edge
- On a write, data is set up before the clock edge
- ZBT (“zero bus turnaround”) memories change the rules for writes

- On a write, data is set up after the clock edge (so that it is read on the following edge)
- Result: no wait states, higher memory throughput

R, R, W, R, Ws
CE |]
WE I ¥ e U
CLK \ - | \ \ \ S \
Address (A :)(A)-(I)-
Data — (e (e)@ e @

A A A A [G. Hom, MIT]
Writeto As DataD; Writeto As DataDs
requested loaded requested loaded

8 November 2016 OpenRAM : An Open-Source Memory Compiler

SRAM Timing in Write Mode

- OpenRAM SRAM is a synchronous memory
with system clock (clk).

- Externally provided control signals are: cLK ‘ ‘
ADDR feee AO) AL)
- Output Enable (OEDb) csb e/
. Chip Select (CSb) WEb gl T\
. Write Enable (WEb OEb |
WD_EN [\ [
- OpenRAM uses Zero Bus Turn-around ga7a iy e T D1 |
(ZBT) technique in timing. X Mem Cell e DO

- The ZBT enables higher memory
throughput since there are no wait states.

8 November 2016

OpenRAM : An Open-Source Memory Compiler

SRAM Timing in Read Mode

- OpenRAM uses Replica Bit-Line
(RBL) structure for timing of the
sense amplifiers.

- The RBL turns on the sense
amplifiers at the exact time in
presence of process variations.

- Read occurs after the negative
edge, but read delay is measured
relative to positive edge.

ADDR feerr AQ AL
CSb Setup; Hold_ N
OEb s o, [
WEb |

DATAOUT Read DO D1

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Outline

Background on Memory Compilers

OpenRAM Features

OpenRAM Architecture and Circuits

OpenRAM Usage

OpenRAM Development

How to port OpenRAM to a New Technology
How to change the OpenRAM Circuits/Modules

Conclusion

8 November 2016

OpenRAM Structure

OpenRAM : An Open-Source Memory Compiler

* OpenRAM has an integrated, custom GDSI| library (gdsMill) to read, write, and manipulate
GDSII files.
» To make the interfacing easier, OpenRAM implements a geometry wrapper class

openram

(geometry.py).

f\

/

GdsMill package

hierarchy_layout| | hierarchy_spice control_logic
add_inst() add_pin()
add_label() add_mod() v y
add_rec() connect_pin() | bitcell_array | |writedriver_array| hierarchical_decoder | replica_bitline |
gds_read() sp_read()
gds_write() sp_write() ¥ v v 3)
: : | bitcell | | writedriver ||inverter||nand2||nand3| | replica_cell |
A 4

y
|co|umnmux_array||senseamp_array| |precharge_array|

| tristate_array |

msflop_array

| columnmux || senseamp | | precharge | |

tristate

msflop

Test Tech Calibre

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Design Class (design.py)

- All of the previous classes are derived from the “design” class.

A design class has:

- Layout (hierarchy _layout.py)

- Instances, objects (shapes), width, height, pin locations
- Netlist (hierarchy_spice.py)

- Modules (other design classes), pins, connections

- A design class has numerous utility functions (e.g., write
GDS/SPICE, add wires, add pins, etc.)

- A design class can run DRC and LVS on itself.

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Types of Design Cells

* Pre-made Designs
« Simplest but also the least technology portable.

* Must be hand-made for each new technology.

 Low-Level Designs
Parameterized transistor class (ptx).

Parameterized logic gate classes (inverter, nand2, nand3, nor2).

« High-Level Designs
- SRAM class instantiates the control logic module and the SRAM banks.

Bank class does the bulk memory layout. It instantiates bit-cell arrays, address
decoders along with their precharge, sense amplifiers, and input/output data flops.

Pre-made Cell Example: 6t Ce||

From fab or self-made
Layout is read from GDS file
oundary determines the size for placement.

Pins are parsed from labels and shapes.
Some pins may be connected by abutment!

Netlist is read from SPICE file

Pins are parsed from subckt

Cells that are premade in OpenRAM

6t cell

replica 6t cell
sense amplifier
flip-flop

write driver
tristate gate

height

Low-Level Class Example: ptx, nand2

Parameterized classes

Size, fingers, transistor type
Ptx has optional contacted source/drain

Subset of design rules are needed in the
tech.py file

8 November 2016 OpenRAM : An Open-Source Memory Compiler

High-Level Class Example: bitcell array

- Can place instances of other design classes.
- Must generate its own layout and netlist.

- Uses utility functions:
- add_mod
- add_inst/connect_inst
- add_rect
- add_via/add_contact
- add_wire (auto vias)
- add_path (single layer wire)
- add_layout_pin

i
1
i
1
S
il
]
i
i
1
1
1

1
1
1

i
i
b.
%j
i
L

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Technology and Tool Portability

OpenRAM is technology independent by using a technology directory that includes:

» Technology’s specific information
» Subset of technology’s DRC rules and the GDS layer map
* Premade library cells (6T, sense amp, ..) to improve the SRAM density.

For technologies that have specific design requirements, such as specialized well
contacts, the user can include helper functions in the technology directory. These will be
called through technology call-back mechanisms.

OpenRAM provides a wrapper interface with DRC/LVS tools that allow flexibility of any
DRC/LVS tool, the default is Calibre nmDRC and nmLVS.

+ DRC/LVS are performed at all levels of the design hierarchy to enhance bug tracking.
+ DRC/LVS can be disabled for improved run-time or if tool is not available.

8 November 2016 OpenRAM : An Open-Source Memory Compiler

OpenRAM Characterizer

Characterizer measures the timing/power characteristics through SPICE
simulation in 4 main steps:

OpenRAM
Memory Compiler

« Generating the SPICE stimulus v
SRAM Netlist
* Running the circuit simulations
: : , p]' Spice Model
» Parsing the simulator’s output Spice Simulator sl _ Memory }<
Characterizer _ _
« Producing the Liberty (.lib) file. - " S[PLEE S
LIB Model

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Characterization
- Setup/Hold for Rise/Fall

- Bisection search using generic SPICE
syntax

- First, finds a feasible period by doubling

the time

- Starts with a “hint” from the technology file

but not required.

- Min Period/Delay for Rise/Fall

the period
irst half of period is address decoding
- Second half of period is access time

- Performs a bisection search on the period

- Power Characterization

- Measures read and write during rise/fall

delay

CLK \

ADDR

~

Al

CSb

OEDb \

- Measures data out delay while minimizing WEb |

SCLK

]T

DATA OUT

OpenRAM Unit Tests

OpenRAM has the set of thorough regression tests implemented with the
Python unit test framework:

e Unit tests allow users to add features without worrying about breaking
functionality.

e Unit tests guide users when porting to new technologies. Unit tests
pass in both FreePDK45 and SCMOS.

e Every sub-module has its own regression test.

e There are also regression tests for memory functionality, library cell
verification, timing verification, and technology verification.

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Unit Test Organization s TEST

- Grouped bottom-up for porting:
- 01 and 02 test library cells (DRC & LVS of predesigned cells).

- 03 and 04 test parameterized gate cells (inv, nand, nor, contact, ptx...).

- 05 — 20 test the modules (bitcell-array, control-logic, sram...).

- 21 — 30 test characterization, liberty, .lef, .v files.
- Run all the tests in a technology with regress.py -t freepdk45

- Regression daemon script regress_daemon.py checks out from svn/git,

runs regression, and emails results.

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Running Unit Tests

- Can specify command-line options:
- Increase verbosity (-v)

Must specify technology
- -t scn3me_subm or -t freepdk45

- Can run individual tests while debugging
- Results in OK, FAIL or ERROR

- Example:
- python tests/16_replica_bitline_test.py —t freepdk45

| ========= Running Test for: R
| ========= freepdk45 =========|
| ========= tests/16 replica bitline test.py =========|

Ran 1 test in 5.282s

OK

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Outline

Background on Memory Compilers

OpenRAM Features

OpenRAM Architecture and Circuits

OpenRAM Usage

OpenRAM Development

How to port OpenRAM to a New Technology
How to change the OpenRAM Circuits/Modules

Conclusion

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Port OpenRAM to a New Tech — 15t step

Setup the technology file in a tech directory (e.g. freepdk45/tech/tech.py):
- Technology name (e.g. freepdk45)

- GDS layer map

- GDS library files (bitcell, sense-amp, write-driver,..)

- Design rules (DRC/LVS test setup)

- SPICE info (transistor name and model,..)

- SPICE stimulus variable (voltage, frequency,...)

- SRAM signal names (DATA, ADDR, clk,...)

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Port OpenRAM to a New Tech — 2" step

Setup the GDS library by custom designing library cells (bitcell.gds, sense-
amp.gds, ...).
Setup the SP library by creating the SPICE netlist for designed cells

(bitcell.sp, sense-amp.sp, ...).

Unit test 01_drc checks the DRC for layouts in GDS library.
Unit test 02_lvs checks the LVS for layouts in GDS I|brary versus their

SPICE netlist in SP directory o e oo
6T cell gds layout in
GDS library

M1 1 2 vdd vdd pmos W=0.9u L=1.2u

M2 2 1 vdd vdd pmos W=0.9u L=1.2u

. M3 br wl 2 gnd nmos W=1.2u L=0.6u
6T cell SPICE netlist
. . M4 bl wl 1 gnd nmos W=1.2u L=0.6u
in SP library
M5 2 1 gnd gnd nmos W=2.4u L=0.6u

M6 1 2 gnd gnd nmos W=2.4u L=0.6u

.ENDS §$ cell_s6t

Port OpenRAM to a New Tech — 3" step

Make sure following tests generate clean DRC/LVS outputs:

03_ptx: generates a single/multi finger transistor (nmos/pmos) based on the technology
information.

Single-finger NMOS Triple-finger PMOS

Port OpenRAM to a New Tech — 3 step

03_wire: generates a metal wire between a set of points for a given layer set.

03_path: generates a metal path between a set of points for a given layer type.

03_contact: generate contact array in different size and type (poly-contact, via,..).

Wire for (M2, Via1, M1) Path for M1 Contacts in different sizes

Port OpenRAM to a New Tech — 3" step

04 _pinv: generates a parametrically sized inverter using ptx.
04_nand_2: generates a parametrically sized 2 input nand gate using ptx.
04_nand_3: generates a parametrically sized 3 input nand gate using ptx.

04 _nor_2: generates a parametrically sized 2 input nor gate using ptx.

Inverter NOR2

Port OpenRAM to a New Tech — 41" step

Following tests generate array of provided layouts in GDS library or parameterized cells:

05 _bitcell_array: generates a mxn bitcell array.
06_hierarchical_decoder: generates a hierarchical decoder with inverter and nand gates.

07_column_mux_array: generates a column multiplexer with bit interleaving structure.

4:1 column_multiplexer

Port OpenRAM to a New Tech — 4t step

08_prechage_array: generates a 1xm parameterized precharge cell array.

09 sense_amp_array: generates a 7xm sense amp array.

10_write_driver_array: generates a 7xm write driver array.

11_ms_flop_array: generates master-slave flipflop arrays for data, address and controls.
15_tri_gate_array: generates a 1xm tri_gate array for bidirectional data bus.

| Bt bligol B 4 1x4 write_driver_array
1x3 precharge_array 1x3 sense_amp_array (there is column_mux in array)

Port OpenRAM to a New Tech — 5t step

Following tests generate the control logic:

14_logic_effort: generates chain of inverters.

16_replica_bitline: generates the replica bitline
using bitcell, replica cell and inverter chain.

15_control_logic: generates the final control logic.

Control_logic (master-slave FF, Nand, Nor, Inverter and RBL) Replica Bitline

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Following test generate the bank array:

- 19_bank: generates a non-control memory bank
by connecting and routing following modules:

- Bitcell-array

- Sense-amp-array

- Write-driver-array

- Hierarchical-decoder

- Wordline-driver

- Precharge-array

- Column-multiplexer (if needed)
- MS-flipflop-array

- Trigate-array

Port OpenRAM to a New Tech — 6t step

Following tests generate SRAM array.
20_sram_1bank: connects and route one memory bank to control logic
20_sram_2bank: generates a double bank SRAM array.

20_sram_4bank: generates a quad bank SRAM array.

Single bank SRAM Dual bank SRAM Quad bank SRAM

Port OpenRAM to a New Tech — 71" step

Use characterizer and a SPICE simulator to ensure that characterization works:

21 _timing_delay: measures the timing delay of the SRAM.
21_timing_hold/setup: measures the setup/hold timing of flip-flops.
23 _lib_sram: generates a lookup-table liberty file for synthesis.

Fle EGt View Select Highhght List Hierarchy Design Attibutes Schemabic Timing Test Power Window Help
®

ZHS QaQ] 2 EE EDE RISC_CO Jiae
» Schematic1 R

ER-R-R-R-R-R-R
]

nnnnnnnnnnnnnnnnnnn

Confirm that .lef file and verilog models s
generate correctly:

NN =R

24 lef _sram: generates a LEF file of
SRAM for place and route.

£S5

25_verilog_sram: generates a Verilog .‘
model for synthesis and place & route. il b

Note: The LEF should be manually inspected in your P&R tool.

8 November 2016

generate gds, SPICE, lib, LEF, Verilog, ...

OpenRAM : An Open-Source Memory Compiler

Port OpenRAM to a New Tech

- If all the previous tests pass you can now make “any” size of SRAM array and

— 8t step

by running openram.py.

- Copy the config_20 freepdk45. py for each size memory and modlfy the

size and technology:

tech_name
word_size

num_words
num_banks

Iig
p—-
<51 ST - b e W
B— ?
v

1

11111

REENAAN

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Outline

Background on Memory Compilers

OpenRAM Features

OpenRAM Architecture and Circuits

OpenRAM Usage

OpenRAM Development

How to port OpenRAM to a New Technology

How to change the OpenRAM Circuits/Modules

Conclusion

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Customize OpenRAM Circuits — 15t step

Want to generate an 12T SRAM array instead of a 6 T?!!
- First, add the 12T bitcell layout to GDS library:
technology/freepdk45/gds_lib/cell _12t.gds

2.035 um

Pl n
< >

Make sure it

has a
Boundary
layer and

pin labels.

0.69 um

[[
BR SEL GND GND SEL BL

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Customize OpenRAM Circuits — 2" step

L I LN TN I 12t” AKkhkkKkkKk Kk k) *k

- Add the 12T SPICE netlist to susckr ce11 12t 5L 2R wn sel vad gnd

SP Ilbrary' M1 Q QB vdd vdd pfet L=0.04u W=0.1lu
technology/freepdk45/sp_lib/ 2 0B 0 vad vdd pfet 1=0.04u W=0.1u
- M3 QO OB gnd gnd nfet L=0.04u W=0.1lu
cell 12t.sp M4 OB Q gnd gnd nfet L=0.04u W=0.lu
R M5 L Q gnd gnd nfet L=0.04u W=0.1lu
BL M6 R QOB gnd gnd nfet L=0.04u W=0.1lu
M7 L WL vdd vdd pfet L=0.04u W=0.1lu
M8 R WL vdd vdd pfet L=0.04u W=0.1lu
M9 Q sel L gnd nfet L=0.04u W=0.1lu
M10 OB sel R gnd nfet L=0.04u W=0.1lu
M11 L WL BL gnd nfet L=0.04u W=0.1lu
M12 R WL BR gnd nfet L=0.04u W=0.1lu

BR

MR2 SEL

.ENDS cell_12t

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Customize OpenRAM Circuits — 3" step

- Create a new bitcell module that uses the 12T cell:
cell_12t.py

import design
from tech import cell
import debug

class cell 12t:
A single bit 12T cell.

pins = ["BL" , "BR" , "WL" , "vdd" , "gnd"]
chars = utils.auto measure libcell (pins, "cell 12t", GDS["unit"],layer["boundary"])

def init (self, name="cell 12t"):
design.design. init (self, name)
debug.info (2, "Create bitcell object")
self.width = bitcell.chars["width"]
self.height = bitcell.chars["height"]

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Customize OpenRAM Circuits — 4™ step

- Change an SRAM configuration file to refer to your new 12T
module as the bitcell: config_example 12t.py

word size = 32
num words = 128
num;banks =1

tri gate array = "tri gate array" .
woraline:driver = "wo;dling_driver" Oh’ repllca tool!
replica bitcell = "replica cell 12t”

bitcell = “cell 12t"

delay chain = "logic effort dc"

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Customize OpenRAM Circuits — 5™ step

- Repeat for replica_bitcell.py.
- Add the 12T replica bitcell layout to GDS library:
technology/freepdk45/gds_lib/replica_cell 12t.gds

- Add the 12T SPICE replica bitcell netlist to SP library:
technology/freepdk45/sp _lib/replica_cell 12t.sp

- Create a new replica bitcell module that uses the 12T cell:
replica_cell _12t.py

- Change an SRAM configuration file to refer to your new 12T replica
module as the replica_bitcell

- Then, make sure all the unit tests all pass!

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Customize OpenRAM Modules — 18t Step

- What if you want to implement a new module? Let’s look at
the bitcell _array.py class.

import debug

import design

from tech import bitcell
from vector import wvector
from globals import OPTS

class bitcell array(design.design):
Creates a rows x cols array of memory cells. Assumes bit-lines
and word line are connected by abutment.
Connects the word lines and bit lines.

mwww

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Customize OpenRAM Modules — 28t Step

- Top level: loads sub-modules then creates netlist/layout and
verifes.
def init (self, name, cols, rows):
design.design. 1init (self, name)

debu
self
self

C =

self.

self.
self.
self.
self.

g.info (1, "Creating {0} {1} x {2}".format (self.name, rows, cols))
.column size = cols
.IOW_size = rows

reload(_ _import (OPTS.config.bitcell))
mod bitcell = getattr(c, OPTS.config.bitcell)

add pins|()
create layout ()
add labels ()
DRC_LVS ()

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Customize OpenRAM Modules — 3 Step

- Dynamically add all the pins to the netlist based on the size.

def add pins(self):

for col in range(self.column size):
self.add_pin("bl[{O}]".fgrmat(col))
self.add pin("br[{0}]".format (col))

for row in rgnge(self.row_size):
self.add pin("wl[{O0}]".format (row))

self.add pin ("vdd")

self.add:pin("gnd")

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Customize OpenRAM Modules — 4" Step

- Place all the instances of the cell module and logically

self.cell = self.mod bitcell()
ConneCt them self.add mod(self.cell)

xoffset = 0.0
for col in range(self.column size):

for row in range (self.row size):
name = "bit r{0} c{l}".format (row, col)

Note: In this cell, all
connections are physically self.add_instinanesneme. 1
made by abutment! offset=[xoffset, tempy],

mirror=dir key)
self.connect inst(["b1l[{0}]".format(col),
"br[{0}]".format(col),
"wl[{0}]".format (row),
"vdd", "gnd"])

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Customize OpenRAM Modules — 5" Step

- Add labels for LVS and store pin offsets for higher level

offset = vector (0.0, 0.0)
for col in range(self.column size):
offset.y = 0.0
self.add label (text="bl[{0}]".format(col),
layer="metal2",
offset=offset + vector(cell 6t["BL"][0],0))
self.add label (text="br[{0}]".format (col),
B layer="metal2",
offset=offset + vector(cell 6t["BR"][0],0))
self .BL positions.append(offset + vector(cell 6t["BL"][0],0))
self.BR positions.append(offset + vector(cell 6t["BR"][0],0))

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Customize OpenRAM Modules — 6! Step
- Compute your height and width

self.height = self.row size * self.cell.height
self.width = self.column size * self.cell.width

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Outline

Background on Memory Compilers

OpenRAM Features

OpenRAM Architecture and Circuits

OpenRAM Usage

OpenRAM Development

How to port OpenRAM to a New Technology
How to change the OpenRAM Circuits/Modules

Conclusion

ry Compiler

Generated Layout by OpenRAM for a Multiport

6R/2W) SRAM in 32 nm SOl CMOS Technology

e i T 1
& i waniJ L— — Ceri}
g w2 T 1
Y wer T L T Lerat
2e i
%"5‘# H H
5221 H
805 & H
028 ! H
HE i
St =
(Rt T 1
T | T
L L
RBRZII-— —]-LRBLZ
RWL3
¢ L L
s rors] L—| T res
E RWL4 T i
rere L—] | TT ro
RWLS _ o
rersT L—| T ras
RWLS T 1
L RERb—‘I r— —1 LRELS
Input Address Flip-Flop Arra; Input Address Flip-Flop Array
FF | FF | FF | FF | control FF [FF [FF] FF
Logic
Input Data Flip-Flop Array
Sense Amp & Write Driver Array
glg|e|x _ gle|e|le
5 5 5 5 l_VIuItl-Port 5 5 5 5
'§ § § g Bitcell Array B 8 38 B
oy oy) o3 (64 x 64) 3 8] 8
a a a a [a) a a a
Control Logic—>] Precharge and Sense Amp Array

s:Coupled

Bistable Circuitry
and Read Buffers

[P |

1.6 um

Read Port #3 Read Port #4 Read Port #5 Read Port #6

382.34um

Input A(\i‘dress FF Array
«— Control Logic

Input Data FF Array, Write Driver Array

:
:
£
i

AL SHHERBHH

Control ~
Logic Precharge Array & Sense Amplifier Array

Input Address FF Array

128.87 um

3

Multiple Bank Results

Single bank SRAM Dual bank SRAM Quad bank SRAM

8 November 2016

OpenRAM : An Open-Source Memory Compiler

Timing and Density Results

0.3

Area (mm2)
o
n

©
=

w H
o o

Area (mmz)
n
(<]

10

-

Freepdk45

--f3--- 16-bit word size
—>& - 32-bit word size
—3¢— 64-bit word size

-0~ 128-bit word size

0 20 40 60 80 100 120 140
Total Size (Kbits)
SCMOS
a
20 40 60 80 100 120 140

Total Size (Kbits)

Access time (ns)

Access time (ns)
n w B [4)]
o o o o

-y
o

Freepdk45

3

20 40 60 80 100 120 140
Total Size (Kbits)
R o
o~ v
e ————————————— = X
Yoo 5
60 80 100 120 140

Total Size (Kbits)

8 November 2016

Comparison with Fabricated SRAMs

OpenRAM : An Open-Source Memory Compiler

Reference

IEEE-VLSI'08

JSSC’'11
JSSC’13

OpenRAM

JSSC’92
JSSC’94
JSSC’99

OpenRAM

Feature Size

65 nm

45 nm

40 nm

45 nm

0.5um

0.5 um

0.5um

0.5 um

Technology

CMOS

CMOS

CMOS

FreePDK45

CMOS

BICMOS

CMOS

SCMOS

Density
[Mb/mm2]

0.7700

0.3300
0.9400

0.8260

0.0036
0.0020
0.0050

0.0050

Conclusions

The main motivation behind OpenRAM is to promote memory-related research in
academia and provides a platform to implement and test new memory designs.

OpenRAM is open-sourced, flexible, and portable and can be adapted to various
technologies.

OpenRAM generates the circuit, functional model, and layout of variable-sized
SRAMs and provides a memory characterizer for synthesis timing/power models.

We are also continuously introducing new features, such as non-6T memories,
variability characterization, word-line segmenting, characterization speed-up, and
a graphical user interface (GUI).

We hope to engage an active community in the future development of OpenRAM.

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Future Work

- Porting to FreePDK15

- Multi-port memories

- Internal clock buffers

- Variability analysis

- Create a maze router

- Alternate cells: 8T? 10T?

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Acknowledgment

- Many thanks to National Science Foundation

- This material is based upon work supported by the National Science
Foundation under Grant No. CNS-1205685.

- We give thanks to other students who have contributed to
the project, as well.
- We hope many will use and contribute to project!

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Reminder: Getting OpenRAM

- https://github.com/mguthaus/OpenRAM

- git clone https://github.com/mguthaus/OpenRAM.git
- https://openram.soe.ucsc.edu/

- Contact:
- Prof. Matthew Guthaus (mrg@ucsc.edu)
- Samira Ataei (ataei@okstate.edu)
- Prof. James Stine (james.stine@okstate.edu)

8 November 2016 OpenRAM : An Open-Source Memory Compiler

Matthew R. Guthaus!, James E. Stine2, Samira Ataei?
Brian Chen', Bin Wu', Mehedi Sarwar?

