import debug import design from tech import drc from math import log from vector import vector from globals import OPTS from pinv import pinv class dff_inv(design.design): """ This is a simple DFF with an inverted output. Some DFFs do not have Qbar, so this will create it. """ unique_id = 1 def __init__(self, inv_size=2, name=""): if name=="": name = "dff_inv_{0}".format(dff_inv.unique_id) dff_inv.unique_id += 1 design.design.__init__(self, name) debug.info(1, "Creating {}".format(self.name)) self.add_comment("inv: {0}".format(inv_size)) self.inv_size = inv_size # This is specifically for SCMOS where the DFF vdd/gnd rails are more than min width. # This causes a DRC in the pinv which assumes min width rails. This ensures the output # contact does not violate spacing to the rail in the NMOS. debug.check(inv_size>=2, "Inverter must be greater than two for rail spacing DRC rules.") self.create_netlist() if not OPTS.netlist_only: self.create_layout() def create_netlist(self): self.add_pins() self.add_modules() self.create_modules() def create_layout(self): self.width = self.dff.width + self.inv1.width self.height = self.dff.height self.place_modules() self.add_wires() self.add_layout_pins() self.DRC_LVS() def add_pins(self): self.add_pin("D") self.add_pin("Q") self.add_pin("Qb") self.add_pin("clk") self.add_pin("vdd") self.add_pin("gnd") def add_modules(self): self.dff = dff_inv.dff_inv(self.inv_size) self.add_mod(self.dff) self.inv1 = factory.create(module_type="pinv", size=self.inv_size, height=self.dff.height) self.add_mod(self.inv1) def create_modules(self): self.dff_inst=self.add_inst(name="dff_inv_dff", mod=self.dff) self.connect_inst(["D", "Q", "clk", "vdd", "gnd"]) self.inv1_inst=self.add_inst(name="dff_inv_inv1", mod=self.inv1) self.connect_inst(["Q", "Qb", "vdd", "gnd"]) def place_modules(self): # Place the DFF self.dff_inst.place(vector(0,0)) # Place the INV1 to the right self.inv1_inst.place(vector(self.dff_inst.rx(),0)) def add_wires(self): # Route dff q to inv1 a q_pin = self.dff_inst.get_pin("Q") a1_pin = self.inv1_inst.get_pin("A") mid_x_offset = 0.5*(a1_pin.cx() + q_pin.cx()) mid1 = vector(mid_x_offset, q_pin.cy()) mid2 = vector(mid_x_offset, a1_pin.cy()) self.add_path("metal3", [q_pin.center(), mid1, mid2, a1_pin.center()]) self.add_via_center(layers=("metal2","via2","metal3"), offset=q_pin.center()) self.add_via_center(layers=("metal2","via2","metal3"), offset=a1_pin.center()) self.add_via_center(layers=("metal1","via1","metal2"), offset=a1_pin.center()) def add_layout_pins(self): # Continous vdd rail along with label. vdd_pin=self.dff_inst.get_pin("vdd") self.add_layout_pin(text="vdd", layer="metal1", offset=vdd_pin.ll(), width=self.width, height=vdd_pin.height()) # Continous gnd rail along with label. gnd_pin=self.dff_inst.get_pin("gnd") self.add_layout_pin(text="gnd", layer="metal1", offset=gnd_pin.ll(), width=self.width, height=vdd_pin.height()) clk_pin = self.dff_inst.get_pin("clk") self.add_layout_pin(text="clk", layer=clk_pin.layer, offset=clk_pin.ll(), width=clk_pin.width(), height=clk_pin.height()) din_pin = self.dff_inst.get_pin("D") self.add_layout_pin(text="D", layer=din_pin.layer, offset=din_pin.ll(), width=din_pin.width(), height=din_pin.height()) dout_pin = self.dff_inst.get_pin("Q") self.add_layout_pin_rect_center(text="Q", layer=dout_pin.layer, offset=dout_pin.center()) dout_pin = self.inv1_inst.get_pin("Z") self.add_layout_pin_rect_center(text="Qb", layer="metal2", offset=dout_pin.center()) self.add_via_center(layers=("metal1","via1","metal2"), offset=dout_pin.center()) def analytical_delay(self, corner, slew, load=0.0): """ Calculate the analytical delay of DFF-> INV -> INV """ dff_delay=self.dff.analytical_delay(corner, slew=slew, load=self.inv1.input_load()) inv1_delay = self.inv1.analytical_delay(corner, slew=dff_delay.slew, load=load) return dff_delay + inv1_delay def get_clk_cin(self): """Return the total capacitance (in relative units) that the clock is loaded by in the dff""" return self.dff.get_clk_cin()