import sys from tech import drc, spice import debug from math import log,sqrt,ceil import datetime import getpass import numpy as np from vector import vector from globals import OPTS, print_time from sram_base import sram_base from bank import bank from dff_buf_array import dff_buf_array from dff_array import dff_array class sram_1bank(sram_base): """ Procedures specific to a one bank SRAM. """ def __init__(self, name, sram_config): sram_base.__init__(self, name, sram_config) def create_modules(self): """ This adds the modules for a single bank SRAM with control logic. """ self.bank_inst=self.create_bank(0) self.control_logic_insts = self.create_control_logic() self.row_addr_dff_insts = self.create_row_addr_dff() if self.col_addr_dff: self.col_addr_dff_insts = self.create_col_addr_dff() self.data_dff_insts = self.create_data_dff() def place_instances(self): """ This places the instances for a single bank SRAM with control logic and up to 2 ports. """ # No orientation or offset self.place_bank(self.bank_inst, [0, 0], 1, 1) # The control logic is placed such that the vertical center (between the delay/RBL and # the actual control logic is aligned with the vertical center of the bank (between # the sense amps/column mux and cell array) # The x-coordinate is placed to allow a single clock wire (plus an extra pitch) # up to the row address DFFs. control_pos = [None]*len(self.all_ports) row_addr_pos = [None]*len(self.all_ports) col_addr_pos = [None]*len(self.all_ports) data_pos = [None]*len(self.all_ports) # This is M2 pitch even though it is on M1 to help stem via spacings on the trunk # The M1 pitch is for supply rail spacings max_gap_size = self.m2_pitch*max(self.word_size+1,self.col_addr_size+1) + 2*self.m1_pitch # Port 0 port = 0 # This includes 2 M2 pitches for the row addr clock line. # It is also placed to align with the column decoder (if it exists hence the bank gap) control_pos[port] = vector(-self.control_logic_insts[port].width - 2*self.m2_pitch, self.bank.bank_array_ll.y - self.control_logic_insts[port].mod.control_logic_center.y - self.bank.m2_gap) self.control_logic_insts[port].place(control_pos[port]) # The row address bits are placed above the control logic aligned on the right. x_offset = self.control_logic_insts[port].rx() - self.row_addr_dff_insts[port].width # It is aove the control logic but below the top of the bitcell array y_offset = max(self.control_logic_insts[port].uy(), self.bank.bank_array_ur.y - self.row_addr_dff_insts[port].height) row_addr_pos[port] = vector(x_offset, y_offset) self.row_addr_dff_insts[port].place(row_addr_pos[port]) # Add the col address flops below the bank to the left of the lower-left of bank array if self.col_addr_dff: col_addr_pos[port] = vector(self.bank.bank_array_ll.x - self.col_addr_dff_insts[port].width - self.bank.m2_gap, -max_gap_size - self.col_addr_dff_insts[port].height) self.col_addr_dff_insts[port].place(col_addr_pos[port]) # Add the data flops below the bank to the right of the lower-left of bank array # This relies on the lower-left of the array of the bank # decoder in upper left, bank in upper right, sensing in lower right. # These flops go below the sensing and leave a gap to channel route to the # sense amps. if port in self.write_ports: data_pos[port] = vector(self.bank.bank_array_ll.x, -max_gap_size - self.data_dff_insts[port].height) self.data_dff_insts[port].place(data_pos[port]) if len(self.all_ports)>1: # Port 1 port = 1 # This includes 2 M2 pitches for the row addr clock line # It is also placed to align with the column decoder (if it exists hence the bank gap) control_pos[port] = vector(self.bank_inst.rx() + self.control_logic_insts[port].width + 2*self.m2_pitch, self.bank.bank_array_ll.y - self.control_logic_insts[port].mod.control_logic_center.y + self.bank.m2_gap) self.control_logic_insts[port].place(control_pos[port], mirror="MY") # The row address bits are placed above the control logic aligned on the left. x_offset = control_pos[port].x - self.control_logic_insts[port].width + self.row_addr_dff_insts[port].width # It is above the control logic but below the top of the bitcell array y_offset = max(self.control_logic_insts[port].uy(), self.bank.bank_array_ur.y - self.row_addr_dff_insts[port].height) row_addr_pos[port] = vector(x_offset, y_offset) self.row_addr_dff_insts[port].place(row_addr_pos[port], mirror="MY") # Add the col address flops above the bank to the right of the upper-right of bank array if self.col_addr_dff: col_addr_pos[port] = vector(self.bank.bank_array_ur.x + self.bank.m2_gap, self.bank.height + max_gap_size + self.col_addr_dff_insts[port].height) self.col_addr_dff_insts[port].place(col_addr_pos[port], mirror="MX") # Add the data flops above the bank to the left of the upper-right of bank array # This relies on the upper-right of the array of the bank # decoder in upper left, bank in upper right, sensing in lower right. # These flops go below the sensing and leave a gap to channel route to the # sense amps. if port in self.write_ports: data_pos[port] = vector(self.bank.bank_array_ur.x - self.data_dff_insts[port].width, self.bank.height + max_gap_size + self.data_dff_insts[port].height) self.data_dff_insts[port].place(data_pos[port], mirror="MX") def add_layout_pins(self): """ Add the top-level pins for a single bank SRAM with control. """ for port in self.all_ports: # Connect the control pins as inputs for signal in self.control_logic_inputs[port] + ["clk"]: self.copy_layout_pin(self.control_logic_insts[port], signal, signal+"{}".format(port)) if port in self.read_ports: for bit in range(self.word_size): self.copy_layout_pin(self.bank_inst, "dout{0}_{1}".format(port,bit), "DOUT{0}[{1}]".format(port,bit)) # Lower address bits for bit in range(self.col_addr_size): self.copy_layout_pin(self.col_addr_dff_insts[port], "din_{}".format(bit),"ADDR{0}[{1}]".format(port,bit)) # Upper address bits for bit in range(self.row_addr_size): self.copy_layout_pin(self.row_addr_dff_insts[port], "din_{}".format(bit),"ADDR{0}[{1}]".format(port,bit+self.col_addr_size)) if port in self.write_ports: for bit in range(self.word_size): self.copy_layout_pin(self.data_dff_insts[port], "din_{}".format(bit), "DIN{0}[{1}]".format(port,bit)) def route_layout(self): """ Route a single bank SRAM """ self.add_layout_pins() self.route_clk() self.route_control_logic() self.route_row_addr_dff() if self.col_addr_dff: self.route_col_addr_dff() self.route_data_dff() def route_clk(self): """ Route the clock network """ # This is the actual input to the SRAM for port in self.all_ports: self.copy_layout_pin(self.control_logic_insts[port], "clk", "clk{}".format(port)) # Connect all of these clock pins to the clock in the central bus # This is something like a "spine" clock distribution. The two spines # are clk_buf and clk_buf_bar control_clk_buf_pin = self.control_logic_insts[port].get_pin("clk_buf") control_clk_buf_pos = control_clk_buf_pin.center() # This uses a metal2 track to the right (for port0) of the control/row addr DFF # to route vertically. For port1, it is to the left. row_addr_clk_pin = self.row_addr_dff_insts[port].get_pin("clk") if port%2: control_clk_buf_pos = control_clk_buf_pin.lc() row_addr_clk_pos = row_addr_clk_pin.lc() mid1_pos = vector(self.row_addr_dff_insts[port].lx() - self.m2_pitch, row_addr_clk_pos.y) else: control_clk_buf_pos = control_clk_buf_pin.rc() row_addr_clk_pos = row_addr_clk_pin.rc() mid1_pos = vector(self.row_addr_dff_insts[port].rx() + self.m2_pitch, row_addr_clk_pos.y) # This is the steiner point where the net branches out clk_steiner_pos = vector(mid1_pos.x, control_clk_buf_pos.y) self.add_path("metal1", [control_clk_buf_pos, clk_steiner_pos]) self.add_via_center(layers=("metal1","via1","metal2"), offset=clk_steiner_pos, rotate=90) # Note, the via to the control logic is taken care of when we route # the control logic to the bank self.add_wire(("metal3","via2","metal2"),[row_addr_clk_pos, mid1_pos, clk_steiner_pos, control_clk_buf_pos]) if self.col_addr_dff: dff_clk_pin = self.col_addr_dff_insts[port].get_pin("clk") dff_clk_pos = dff_clk_pin.center() mid_pos = vector(clk_steiner_pos.x, dff_clk_pos.y) self.add_wire(("metal3","via2","metal2"),[dff_clk_pos, mid_pos, clk_steiner_pos]) if port in self.write_ports: data_dff_clk_pin = self.data_dff_insts[port].get_pin("clk") data_dff_clk_pos = data_dff_clk_pin.center() mid_pos = vector(clk_steiner_pos.x, data_dff_clk_pos.y) self.add_wire(("metal3","via2","metal2"),[data_dff_clk_pos, mid_pos, clk_steiner_pos]) def route_control_logic(self): """ Route the outputs from the control logic module """ for port in self.all_ports: for signal in self.control_logic_outputs[port]: # The clock gets routed separately and is not a part of the bank if "clk" in signal: continue src_pin = self.control_logic_insts[port].get_pin(signal) dest_pin = self.bank_inst.get_pin(signal+"{}".format(port)) self.connect_rail_from_left_m2m3(src_pin, dest_pin) self.add_via_center(layers=("metal1","via1","metal2"), offset=src_pin.rc(), rotate=90) def route_row_addr_dff(self): """ Connect the output of the row flops to the bank pins """ for port in self.all_ports: for bit in range(self.row_addr_size): flop_name = "dout_{}".format(bit) bank_name = "addr{0}_{1}".format(port,bit+self.col_addr_size) flop_pin = self.row_addr_dff_insts[port].get_pin(flop_name) bank_pin = self.bank_inst.get_pin(bank_name) flop_pos = flop_pin.center() bank_pos = bank_pin.center() mid_pos = vector(bank_pos.x,flop_pos.y) self.add_wire(("metal3","via2","metal2"),[flop_pos, mid_pos,bank_pos]) self.add_via_center(layers=("metal2","via2","metal3"), offset=flop_pos, rotate=90) def route_col_addr_dff(self): """ Connect the output of the row flops to the bank pins """ for port in self.all_ports: bus_names = ["addr_{}".format(x) for x in range(self.col_addr_size)] col_addr_bus_offsets = self.create_horizontal_bus(layer="metal1", pitch=self.m1_pitch, offset=self.col_addr_dff_insts[port].ul() + vector(0, self.m1_pitch), names=bus_names, length=self.col_addr_dff_insts[port].width) dff_names = ["dout_{}".format(x) for x in range(self.col_addr_size)] data_dff_map = zip(dff_names, bus_names) self.connect_horizontal_bus(data_dff_map, self.col_addr_dff_insts[port], col_addr_bus_offsets) bank_names = ["addr{0}_{1}".format(port,x) for x in range(self.col_addr_size)] data_bank_map = zip(bank_names, bus_names) self.connect_horizontal_bus(data_bank_map, self.bank_inst, col_addr_bus_offsets) def route_data_dff(self): """ Connect the output of the data flops to the write driver """ # This is where the channel will start (y-dimension at least) for port in self.write_ports: if port%2: offset = self.data_dff_insts[port].ll() - vector(0, (self.word_size+2)*self.m1_pitch) else: offset = self.data_dff_insts[port].ul() + vector(0, 2*self.m1_pitch) dff_names = ["dout_{}".format(x) for x in range(self.word_size)] dff_pins = [self.data_dff_insts[port].get_pin(x) for x in dff_names] bank_names = ["din{0}_{1}".format(port,x) for x in range(self.word_size)] bank_pins = [self.bank_inst.get_pin(x) for x in bank_names] route_map = list(zip(bank_pins, dff_pins)) self.create_horizontal_channel_route(route_map, offset) def add_lvs_correspondence_points(self): """ This adds some points for easier debugging if LVS goes wrong. These should probably be turned off by default though, since extraction will show these as ports in the extracted netlist. """ for n in self.control_logic_outputs[0]: pin = self.control_logic_insts[0].get_pin(n) self.add_label(text=n, layer=pin.layer, offset=pin.center())