
OpenRAM Manual

Matthew R. Guthaus - mrg@ucsc.edu
and many others

February 12, 2018

1

1 License

Copyright 2018 Regents of the University of California and The Board
of Regents for the Oklahoma Agricultural and Mechanical College
(acting for and on behalf of Oklahoma State University)

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

2

Contents

1 License 2

2 Introduction 5

2.1 Requirements . 6

2.2 Environment Variables . 7

2.3 Usage . 7

3 Overview of the SRAM Structure 8

3.1 Inputs/Outputs . 8

3.2 Top-Level SRAM Module . 10

4 Modules 10

4.1 The Bitcell and Bitcell Array . 11

4.2 Precharge Circuitry . 12

4.3 Address Decoders . 13

4.4 Wordline Driver . 15

4.5 Column Mux . 15

4.6 Sense Amplifier . 16

4.7 Write Driver . 18

4.8 Flip-Flop Array . 18

4.9 Control Logic . 19

5 Bank and SRAM 20

6 Software Implementation 21

6.1 Design Hierarchy . 22

6.2 Creating a New Design Module . 25

6.3 GDSII Files and GdsMill) . 27

6.4 Technology Directory . 29

6.5 DRC/LVS Interface . 30

7 Custom Layout Design Functions in Software 30

7.1 Parameterized Transistor . 31

3

7.2 Parameterized Inverter . 31

7.3 Parameterized NAND2 . 33

7.4 Parameterized NAND3 . 33

7.5 Parameterized NOR2 . 34

7.6 Path and Wire . 34

8 Porting to a new Technologies 35

8.1 The GDS and Spice Libraries . 35

8.2 Technology Directory . 36

9 Timing and Control Logic 36

9.1 Signals . 36

9.2 Timing Considerations . 37

9.3 SRAM Operation . 37

9.4 Zero Bus Turnaround (ZBT) . 40

9.5 Control Logic . 40

9.6 Replica Bitline Delay . 41

9.7 Timing and Power Characterizer . 43

10 Unit Tests 43

10.1 Usage . 45

11 Debug Framework 46

4

2 Introduction

The OpenRAM project aims to provide a free, open-source memory compiler development framework
for Random-Access Memories (RAMs). Most academic Integrated Circuit (IC) design methodologies
are inhibited by the availability of memories. Many standard-cell process design kits (PDKs) are avail-
able from foundries and vendors, but these PDKs do not come with memory arrays or compilers. Some
PDKs have options to request “black box” memory models, but these are not modifiable, have lim-
ited available configurations, and do not have full details available to academics. These restrictions
make comparison and experimentation with real memory systems impossible. OpenRAM, however,
is user-modifiable and portable through technology libraries to enable experimentation with real-world
memories at a variety of performance points and costs.

The specific features of OpenRAM are:

• Memory Array Generation

Currently, OpenRAM includes features such as automatic word-line driver sizing, efficient de-
coder sizing, multiple-word column support, and self-timing with replica bitlines.

• Portability and Extensibility

OpenRAM is a Python program. Python enables portability to numerous platforms and enables
the program to be extended by anyone. In general, it works on Linux, MacOS, and Windows
platforms.

User-readable technology files enable migration to a variety of process technologies. Currently,
an implementation in a non-fabricale 45nm technology (FreePDK45) is provided and the MOSIS
Scalable CMOS (SCN3ME SUBM.30) is provided. The compiler has also been extended to
several technologies. We hope to work with vendors to distribute the technology information of
others commercial technologies soon.

OpenRAM makes calls to both open-source or commercial circuit simulators and DRC/LVS tools
in an abstracted way for circuit simulation and verification. This enables adaptation to other
design methodologies. It supports a completely open-source platform for older SCMOS tech-
nologies.

• Timing and Power Characterization

OpenRAM provides a basic framework for analysis of timing and power. This includes both
analytical estimates, un-annotated spice simulations, or back-annotated simulations. The timing
and power views are provided in the Liberty open format for use with the most common logic
synthesis and timing analysis tools.

• Commercial Tool Independence and Interoperability

To keep OpenRAM portable and maximize its usefulness, it it independent from any specific
commercial tool suite or language. OpenRAM interfaces to both open-source (e.g., NGSpice) and
commercial circuit simulators through the standard Spice3 circuit format. The physical layout is
directly generated in the GDSII layout stream format which can be imported into any academic or
commercial layout tools. We provide a Library Exchange Format (LEF) file for interfacing with
commercial Placement and Routing tools. We provide a Verilog behavioral model for simulation.

• Silicon Verification TBD

5

2.1 Requirements

Development is done on Ubuntu or MacOS systems with Python 2.7. It requires a few common Python
libraries such as numpy, scipy (soon, for optimization) along with standard Python libraries (os, sys,
etc.).

2.1.1 Timing Verification Tools

For peformance reasons, OpenRAM uses analytical delay models by default. If you wish to enable
simulation-based timing characterization, you must enable this on the command line with the “-c” com-
mand line argument.

OpenRAM can use the following circuit simulators and possibly others if they support the Spice3
file format:

• HSpice I-2013.12-1 or later

• ngspice 26 http://ngspice.sourceforge.net/

• CustomSim (xa) M-2017.03-SP5 or later

2.1.2 Physical Verification Tools

By default, OpenRAM will perform DRC and LVS on each level of hierarchy. To do this, you must have
a valid DRC and LVS tool and the corresponding rule files for the technology. OpenRAM can, however,
run without DRC and LVS verification using the “-n” command line argument. It is not recommended
to use this if you make any changes, however.

DRC can be done with:

• Calibre 2012.3 15.13 or later (SCMOS or FreePDK45)

• Magic http://opencircuitdesign.com/magic/ (SCMOS only)

LVS can be done with:

• Calibre 2012.3 15.13 or later (SCMOS or FreePDK45)

• Netgen http://opencircuitdesign.com/netgen/ (SCMOS only)

2.1.3 Technology Files

To work with FreePDK45, you must install the FreePDK baseline kit from:
https://www.eda.ncsu.edu/wiki/FreePDK45:Contents

We have included an example Calibre DRC deck for MOSIS SCMOS design rules, but DRC with
Magic relies on the MOSIS scalable design rules:
https://www.mosis.com/files/scmos/scmos.pdf.
We require the format 32 or later to enable stacked vias which is included with Qflow:

6

http://ngspice.sourceforge.net/
http://opencircuitdesign.com/magic/
http://opencircuitdesign.com/netgen/
https://www.eda.ncsu.edu/wiki/FreePDK45:Contents
https://www.mosis.com/files/scmos/scmos.pdf

git clone http://opencircuitdesign.com/qflow
cp tech/osu050/SCN3ME_SUBM.30.tech <your magic tech lib>

You can over-ride the location of the DRC and LVS rules with the DRCLVS HOME environment
variable.

2.1.4 Spice Models

FreePDK45 comes with a spice device model. Once this is installed and the PDK DIR environment
variable for FreePDK45 is set, these spice models are used.

SCMOS, however, does not come with a device spice model. This must be obtained from MOSIS or
another vendor. We use the ON Semiconductor 0.5um device models, but are unable to distribute them.
We have included our own generic spice models for simulation of SCMOS, but we recommend that you
replace these with more accurate foundry models.

You can over-ride the location of the spice models with the SPICE MODEL DIR environment vari-
able to ensure that they do not “creep” into the OpenRAM git repository.

2.2 Environment Variables

In order to make OpenRAM flexible, it uses two environment variables to make it relocatable in a
variety of user scenarios. Specifically, the user may want technology directories that are separate from
OpenRAM. Or, the user may want to have several versions of OpenRAM. This is done with the folowing
required environment variables:

• OPENRAM HOME defines the location of the compiler source directory.

• OPENRAM TECH defines the location of the OpenRAM technology files. This is discussed later
in Section 8.2.

Other environmental variables and additional required paths for specific technologies are dynam-
ically added during runtime by sourcing a technology setup script. These are mostly PDK-specific.
These are located in the ”$OPENRAM TECH/setup scripts” directory. Example scripts for SCMOS
and FreePDK45 are included with the distribution.

2.3 Usage

The OpenRAM compiler requires a single argument of a configuration file. The configuration file spec-
ifies, at a minimum, the memory size parameters in terms of the number of words, word size (in bits),
and number of banks. By default, OpenRAM will chose the number of columns to make the mem-
ory reasonably square. Other common configuration parameters are the output path and base filename,
characterization corners (including the supply voltage), number of ports, technology node, etc.

The configuration file can be used to over-ride any option in the options.py file. Many of these can
also be controlled by the command-line which over-ride the configuration file.

7

The one exception is the technology name. The technology name of a config file will over-ride a
command-line option. The unit tests use the command line to read a configuration file, so it is a chicken
and egg situation.

Lastly, the configuration file can over-ride any of the different circuit implementations for each mod-
ule. For example, you can replace the default address decoder or bitcell with a new one by specifying a
new python module that implements a new one.

An entire example configuration file looks like:

word_size = 16
num_words = 32
num_banks = 1

tech_name = "freepdk45"

output_path = "/tmp/outputdir"
output_name = "mysram"

bitcell = "custom_bitcell"

In this example, the user has specified a custom bitcell that will be used when creating the bitcell array
and other modules.

OpenRAM has many command line arguments. Other useful command line arguments are:

• -h : To get help for the command-line options

• -v : To increase the verbosity (may be used multiple times)

3 Overview of the SRAM Structure

The baseline SRAMs generated by OpenRAM have 1 read/write port as shown in Figure 2. The address
is decoded (Section ??) into a one-hot set of word lines (WL) which are driven by word line drivers
(Section 4.4) over the bit-cell array (Section 4.1). To facilitate reads, the precharge circuitry (Section 4.2)
precharges the bitlines so that the column mux (Section 4.5) can select the appropriate word which is
then sensed by the sense amplifiers (Section 4.6). Write drivers (Section 4.7) use the bidirectional nature
of the column mux to write the appropriate columns in a given memory row.

A representative layout of such a memory closely resembles the logical representation and is shown
in Figure 3. The address and data flip-flops and control circuitry are not shown but are detailed in
Section 9.5.

3.1 Inputs/Outputs

The inputs to the SRAM are:

8

Memory Compiler

(Python)

Logical

LEF/FRAM

GDSII Liberty (.lib)
Spice/LVS

Verilog

Front-End

Physical Estimated

Timing/Power

Memory Characterizer

(Python)

Simulator

(e.g. ngspice, spectre)

Extractor

(e.g. Calibre)

Annotated

Timing/Power

Liberty (.lib)

Spice

Memory Characterizer

(Python)

Back-End
Methodology

Front-End
Methodology

Simulator

(e.g. ngspice, spectre)

Tech

Library

User Specification

(word size, memory size, aspect ratio, etc.

Figure 1: Overall Compilation and Characterization Methodology

• clk - External Clock

• CSb - Active-low Chip Select

• WEb - Active-low Write Enable

• OEb - Active-low Output Enable

• ADDR[#] - Address Bus input (LSB is 0)

• DATA[#] - Bi-directional Data bus (LBS is 0)

If multiple ports are used, the ADDR and DATA buses are appended with integers to extend them.

The outputs to the SRAM are:

• DATA# - correspond to the bi-directional Data bus.

Precharge
Decoder

Column Mux

WL
Driver

Lower
Address

Upper
Address

Write Driver

Sense Amp

6T Cell

Data In/Out

Figure 2: Single Port SRAM Architecture

9

ARRAY

SENSE AMP

WRITE DRIVER

PRECHARGE

W
L
 D

R
IV

E
R

D
E
C

O
D

E
R

COLUMN MUX

Figure 3: 1k SRAM with Two Columns and 16-bit Data

The supply voltages to the SRAM are:

• vdd - Supply voltage

• gnd - Ground supply voltage

3.2 Top-Level SRAM Module

The sram class in sram.py is the top-level SRAM module. This class handles the overall organization
of the memory, instantiates the contorl logic, instantiates a number of banks, and creates decoded enable
signals for multiple banks. All of the top level routing is performed in the sram class.

The sram class instantiates identical copies of the bank module from bank.py. All other sub-
modules access the value of sizes from bank. The bank module includes an address decoder, (optional)
column address decoder, (optional) column mux, sense amplifiers, precharge circuitry, write drivers,
etc. A single bank organization is depicted in Figure 2.

Discussion of the design data structure is discussed in Section 6.1 and the modules contained in the
top-level SRAM are detailed in Section 4.

4 Modules

This section provides an overview of the main modules that are used in an SRAM. For each module,
we will provide both an architectural description and an explanation of how that design is generated and
used in OpenRAM. The modules described below are provided in the first release of OpenRAM, but by
no means is this an exhaustive list of the possible circuits that can be adapted into a SRAM architecture;
refer to Section 6 for more information on adding different module designs to the compiler.

Data structures for schematic and layout are provided in the base directory. These implement a
generic design object and have many auxiliary functions for routing, pin access, placement, DRC/LVS,
etc. These are discussed further in Section 6.

Each module has a corresponding Python class in the compiler/modules directory. These

10

classes are used to generate both the GDSII layout and spice netlists. A module can consist of hard
library cells (Section 6.4), paramterized cells (Section 7) or other modules.

When combining modules at any level of hierarchy, DRC rules for minimum spacing of metals,
wells, etc. must be followed and DRC and LVS are run by default after each hierarchical module’s
creation. A module is responsible for creating its own pins to enable routing at the next level up in the
hierarchy. A module must also define its height and width assuming a (0,0) offset for the lower-left
coordinate to aid with placement.

4.1 The Bitcell and Bitcell Array

OpenRAM can work with any cell as the bitcell. This could be a foundry created one or a user design
rule cell for experiments. In addition, it could be a common 6T cell or it could be replaced with an 8T,
10T or other cell, depending on needs.

By default, OpenRAM uses a standard 6T cell as shown in Figure 4. The cross coupled inverters
hold a single data bit that can either be driven into, or read from the cell by the bitlines. The access
transistors are used to isolate the cell from the bitlines so that data is not corrupted while a cell is not
being accessed.

Figure 4: Standard 6T cell.

The 6T cells are tiled together in both the horizontal and vertical directions to make up the memory
array.

It is common practice to keep the aspect ratio of a memory array roughly “square” to ensure that
the bitlines and wordlines do not become too long. If the bitlines are too long, this can increase the
bitline capacitance, slow down the operation and lead to bitline leakage problems. To make an array
“more square”, multiple words can share rows by interleaving the bits of each word. The column mux
in Section 4.5 is responsbile for selecting a subset of bitcells in a row to extract a word during read and
write operations.

In OpenRAM, we provide a library cell for the 6T cell that can be swapped with a fab memory cell,
if available. The transitors in the cell are sized appropriately considering read and write noise margins.

11

The bitcell class in modules/bitcell.py is a single memory cell and is usually a pre-made
library cell.

The bitcell array class in modules/bitcell_array.py dynamically implements the memory
cell array by instantiating a the bitcell class in rows and columns.

During the tiling process, bitcells are abutted so that all bitlines and word lines are connected in the
vertical and horizontal directions respectively. This is done by using the boundary layer to define the
height and width of the cell. If this is not specified, OpenRAM will use the bounding box of all shapes
as the boundary. The boundary layer should be offset at (0,0) in the lower left coordinate.

In order to share supply rails, bitcells are flipped in alternating rows.

4.2 Precharge Circuitry

The precharge circuit is depicted in Figure 5 and is implemented by three PMOS transistors. The input
signal to the cell, clk, enables all three transistors during the first half of a read or write cycle (i.e. while
the clock signal is low). M1 and M2 charge bl and br to vdd while M3 equalizes the voltages seen
between the bitlines.

bl br

vdd

en
M1 M2

M3

Figure 5: Schematic of a precharge circuit.

In OpenRAM, the precharge citcuitry is dynamically generated using the parameterized transistor
class ptx which is further discussed in Section 7.1. The offsets of the bitlines and the width of the
precharge cell are equal to the bitcell so that the bitlines are correctly connected by abutment. The
precharge class in modules/precharge.py dynamically generates a single precharge cell.

modules/precharge_array.py creates a row of precharge cells at the top of a bitcell array.

12

4.3 Address Decoders

The address decoder deodes the binary-encoded row address bits from the address bus as inputs, and
asserts a one-hot wordline in the row that data is to be read or written. OpenRAM provides a hierarchical
address decoder as the default, but will soon have other options.

The address decoders are created using parameterized gates (pnand2, pnand3, pinv) and transistors
(ptx). This means that the decoders do not rely on any hard library cells.

4.3.1 Hierarchical Decoder

A simple 2:4 decoder is shown in Figure 6. This decoder computes all of the possible decode values
using a single level of nand gates along with the inverted and non-inverted inputs. As the decoder size
increases the size of the nand gates required for decoding would increase proportional to the bits to be
decoded. This would not be practical for large decoders.

Figure 6: Schematic of 2-4 simple decoder.

A hierarchical decoder uses two-levels of decoding hierarchy to perform an address decode. The first
stage computes predecoded values while the second stage computes the final decoded values. Figure 7
shows a 4:16 heirarchical decoder. The decoder uses two 2:4 decoders for predecoding and 2-input nand
gates and inverters for final decoding to form the 4:16 decoder.

The predecoder generates a total of 8 intermediate signals from the address bits and their comple-
ments. These intermediate signals are in two groups of 4 from each decoder. The enumeration of all 4
x 4 predecoded values are used by the final decode to produce the 16 decoded results. As an example,
Table 1 gives the detailed input and output siganls for the 4:16 hierarchical decoder.

As the address size increases, additional sizes of pre- and final decoders can be used. In OpenRAM,
there are implementations for modules/hierarchical_predecode2x4.py and modules/hierarchical_predecode3x8.py
to produce 2:4 and 3:8 predecodes, respectively. These same decoders are used to generate the column
mux select bits as well.

13

Figure 7: Schematic of 4:16 hierarchical decoder.

For the final decode, we can use either pnand2 or pnand3 gates. This allows a maximum size of
three 3:8 predocers along with a final pnand3 decode stage, or, 512 word lines. To extend beyond this,
a pnand4 or a 4:16 predecoder would be needed.

14

A[3:0] predecoder1 predecoder2 Selected WL
0000 1000 1000 0
0001 1000 0100 1
0010 1000 0010 2
0011 1000 0001 3
0100 0100 1000 4
0101 0100 0100 5
0110 0100 0010 6
0111 0100 0001 7
1000 0010 1000 8
1001 0010 0100 9
1010 0010 0010 10
1011 0010 0001 11
1100 0001 1000 12
1101 0001 0100 13
1110 0001 0010 14
1111 0001 0001 15

Table 1: Truth table for 4:16 hierarchical decoder.

4.4 Wordline Driver

The word line driver buffers the address decoder to drive the wordline and gates the signal until the
decode has stabilized. Without waiting, an incorrectly asserted wordline could erase memory contents.
The word line driver is sized according to the bitcell array width so that wordlines in larger memory
arrays can be appropriately driven.

The first half of the clock cycle is used for address decoding in OpenRAM. Therefore, the wordline
driver is enabled in the second half of the clock cycle in OpenRAM. The buffered clock signal drives
each wordline driver row and is logically ANDed with the decoder output.

In multi-bank structures the clock buffer is also anded with the bank select signal to prevent the
read/writing of an entire bank.

Figure 8 illustrates the wordline driver and its inputs/outputs. This is implemented in the modules/wordline_driver.py
module and matches the number of rows in the bitcell array of a bank.

OpenRAM creates the wordline drivers using the parameterized pinv and pnand2 classes. This
enables the wordline driver to be matched to the bitcell height and to sized to drive the wordline load.

4.5 Column Mux

The column mux is an optional module in an SRAM bank. Without a column mux, the bank is assumed
to have a single word in each row. A column mux enables more more than one word to be stored in each
row and read/written individually. The column mux is used for both the read and write operations by
connecting the bitlines of a bank to both the sense amplifier and the write driver.

In OpenRAM, the column mux uses the high address bits to select the appropriate word in each

15

Figure 8: Diagram of word line driver.

row. If n-bits are used, there are 2n words in each row. OpenRAM currently allows 2, 4, or 8 words per
row, but the 8 words are not fully debugged (as of 2/12/18).

4.5.1 Single-Level Column Mux

OpenRAM includes a single-level pass-gate mux implemtation for the column mux. A single level of
NMOS devices is driven by either the input address (and it’s complement) or decoded input addresses
using a 2:4 predecoder (Section 4.3.1).

Figure 9 shows the schematic of a 2:1 single-level column mux. In this column mux, the MSB of
the address bus and it’s complement drive the pass transistors.

Figure 10 shows the schematic of a 4:1 single-level column mux. The select bits are decoded from
the 2 MSB of the address bus using a 2:4 decoder. The 2:4 decoder provides one-hot select signals to
select one column.

In OpenRAM, one mux, single level mux, is dynamically generated in modules/single_level_column_mux.py
and multiple of these muxes are tiled together in modules/single_level_column_mux_array.py.

single level mux uses the parameterized ptx (Section 7.1 to generate 2 or 4 NMOS transistors for
each the bl and br bitlines. Horizontal rails are added for the sel signals. The bitlines are automatically
pitch-matched to the bitcell array.

4.6 Sense Amplifier

The sense amplifier is used to sense the difference between the bitline and bitline bar while a read
operation is performed. The sense amplifier also includes two PMOS transistors for bitline isolation to
speed-up read operations. The schematic for the sense amp is shown in Figure 11.

During address decoding (while the wordline is not asserted), the sense amplifier is disabled and the
bitlines are precharged to vdd by the precharge unit. The two PMOS transistors also connect the bitlines
to the sense amplifier.

16

Figure 9: Schematic of a 2:1 single level column mux. FIXME: Signals names are wrong.

Figure 10: Schematic of a 4:1 single level column mux. FIXME: Signals names are wrong.

The en signal comes from the control logic (Section 9.5) including the timing and replica bitline
(Section 9.6). It is only enabled after sufficient swing is seen on the bitlines so that the value can be
accurately sensed.

The sense amplifier is enabled by the en signal, which initiates the read operation, and also isolates
the sense amplifier from the bitlines. This allows the sense amplifier to drive a smaller capacitance
rather than the whole bitline. At this time, the footer transistor is also enabled which allows the sense
amplifier to use feedback to sense the bitline differential voltage.

When the sense amp is enabled, one of the bitlines experiences a voltage drop based on the value
stored in the memory cell. If a zero is stored, the bitline voltage drops. If a one is stored, the bitline bar
voltage drops. The output signal is then taken to a true logic level and latched for output to the data bus.

In OpenRAM, the sense amplifier is a libray cell. The associated layout and spice netlist can be
found in the gds_lib and sp_lib in the technology directory. The sense amp class in modules/sense_amp.py
is a single instance of the sense amp library cell.

The sense amp array class in modules/sense_amp_array.py handles the tiling of the sense
amps cells. One sense amp cell is needed per data bit and the sense amp cells need to be appropriately
spaced so that they can hook up to the column mux bitline pairs. The spacing is determined based on
the number of words per row in the memory array.

The sense amp is a library cell so that custom amplifier designs could be swapped into the memory

17

vdd

DATA

brbl en

enen

Figure 11: Schematic of a single sense amplifier cell.

as needed. The two major things that need to be considered while designing the sense amplifier cell are
the size of the cell and the bitline/input pitches. Optimally, the cell should be no wider than the 6T cell
so that it abuts to the column mux and no extra routing or space is needed. Also, the bitline inputs of the
sense amp need to line up with the outputs of the write driver. In the current version of OpenRAM, the
write driver is situated under the sense amp, which had bitlines spaning the entire height of the cell. In
this case, the sense amplifier is disabled during a write operation but the bitlines still connect the write
driver to the column mux without any extra routing.

4.7 Write Driver

The write driver is used to drive the input signal into the memory cell during a write operation. It
can be seen in Figure 12 that the write driver consists of two tristate buffers, one inverting and one
non-inverting. It takes in a data bit, from the data bus, and outputs that value on the bitline, and its
complement on bitline bar. The bitlines need to be complements so that the data value can be correctly
stored in the 6T cell. Both tristates are enabled by the EN signal.

Currently, in OpenRAM, the write driver is a library cell. The associated layout and spice netlist can

18

vdd

en

DATA

bl br

Figure 12: Schematic of a write driver cell, which consists of 2 tristates (non-inverting and inverting) to
drive the bitlines.

be found in the gds_lib and sp_lib in the FreePDK45 directory. Similar to the sense_amp_array,
the write_driver_array class tiles the write driver cells. One driver cell is needed per data bit
and Vdd, Gnd, and EN signals must be extended to span the entire width of the cell. It is not optimal
to have the write driver as a library cell because the driver needs to be sized based on the capacitance
of the bitlines. A large memory array needs a stronger driver to drive the data values into the memory
cells. We are working on creating a parameterized tristate class, which will dynamically generate write
driver cells of different sizes/strengths.

4.8 Flip-Flop Array

In a synchronous SRAM it is necessary to synchronize the inputs and outputs with a clock signal by us-
ing flip-flops. In FreePDK45 we provide a library cell for a simple master-slave flip-flop, see schematic

19

in Figure 13. In our library cell we provide both Q and Q bar as outputs of the flop because inverted
signals are used in various modules. The ms_flop class in ms_flop.py instatitates a single master-
slave flop, and the ms_flop_array class generates an array of flip-flops. Arrays of flops are nec-
essary for the data bus (an array for both the inputs and outputs) as well as the address bus (an array
for row and column inputs). The ms_flop_array takes the number of flops and the type of array as
inputs. Currently, the type of the array must be either “data in”, “data out”, “addr row”, or “addr col”
verbatim. The array type input is used to look up that associated pin names for each of the flop arrays.
This was implemented very quickly and should be improved in the near future...

Figure 13: Schematic of a master-slave flip-flop provided in FreePDK45 library

4.9 Control Logic

The details of the control logic architecture are outlined in Section 9.5. The control logic module,
control_logic.py, instantiates a control_logic class that arranges all of the flip-flops and
logic associated with the control signals into a single module. Flip-flops are instantiated for each control
signal input and library NAND and NOR gates are used for the logic. A delay chain, of variable length,
is also generted using parameterized inverters. The associated layouts and spice netlists can be found in
the gds_lib and sp_lib in the FreePDK45 directory.

5 Bank and SRAM

The overall memory architecture is shown in figure 14. As shown in this figure one Bank contains
different modules including precharge-array which is positioned above the bitcell-array, column-mux-
array which is located below the bitcell-array, sense-amp-array, write-driver-array, data-in-ms-flop-array
to synchronize the input data with negative edge of the clock, tri-gata-array to share the bidirectional
data-bus between input and output data, hierarchical decoder which is placed on the right side of the
bitcell-array (predecoder + decoder), wordline-driver which drives the wordlines horizontally across the
bitcell-array and address-ms-flops to synchronize the input address with positive edge of the clock.

In bitcell-array each memory cell is mirrored vertically and horizontally inorder to share VDD and

20

GND rails with adjacent cells and form the array. Data-bus is connected to tri-gate, address-bus is con-
nected to address-ms-flops and bank-select signal will enable the bank when it goes high. To complete
the SRAM design, bank is connected to control-logic as shown in figure 14. Control-logic controls the
timing of modules inside the bank. CSb, OEb, Web and clk are inputs to the control logic and output of
control logic will ANDed with bank-select signal and send to the corresponding modules.

Figure 14: Overal bank and SRAM architecture.

In order to reduce the delay and power, divided wordline strategy have been used in this compiler.

21

Part of the address bits are used to define the global wordline (bank-select) and rest of address bits are
connected to hierarchical decoder inside each bank to generate local wordlines that actually drive the
bitcell access transistors.

As shown in figure 15 SRAM is divided to two banks which share data-bus, address-bus, control-bus
and control-logic. In this case one bit of address (most significant bit) goes to an ms-flop and outputs of
ms-flop (address-out and address-out-bar) are connected to banks as bank-select signals. Control logic
is shared between two banks and based on which bank is selected, control signals will activate modules
inside the selected bank. In this architecture, the total cell capacitance is reduced by up to a factor of
two. Therefore the power will be reduced greatly and the delay among the wordlines is also reduced.

Figure 15: SRAM is divided to two banks which share the control-logic.

In figure 16, four banks are connected together. In this case a 2:4 decoder is added to select one of
the banks using two most significant bits of input address. Control signals are connected to all banks
but will turn on only the selected bank.

6 Software Implementation

OpenRAM is implemented using object-oriented data structures in the Python programming language.
The top-level executable is openram.py which parses input arguments, creates the memory and saves

22

Figure 16: SRAM is divided to 4 banks wich are controlled by the control-logic and a 2:4 decoder.

23

the output.

6.1 Design Hierarchy

All modules in OpenRAM are derived from the design class in design.py. The design class is
a data structure that consists of a spice netlist, a layout, and a name. The spice netlist capabilities
are inherited from the hierarchy_spice class while the layout capabilities are inherited from the
hierarchy_layout class. The only additional function in design.py is DRC_LVS(), which per-
forms a DRC/LVS check on the module.

module
(e.g., bit-cell array)

design
DRC_LVS()

layout spice

Figure 17: Class hierarchy

6.1.1 Spice Hierarchy

The spice hierarchy is stored in the spice class in hierarchy_spice.py. When the design class is
initialized for a module, a data structure for the spice hierarchy is created. The spice data stucture name
becomes the name of the top-level subcircuit definition for the module. The list of pins for the module

24

are added to the subcircuit definition by using the add_pin() function. The add_mod() function
adds an instance of a module/library cell/parameterized cell as a subcircuit to the top-level structure.
Each time a sub-module has been added to the hierarchy, the pins of the sub-module must be connected
using the connect_pins() function. It is important to note that the pins must be listed in the same
order as they were added to the submodule. Also, an assertion error will occur if there is a mismatch
in the number of net connections. The spice class also contains functions for reading or writing spice
files:

• sp_read(): this function is used to read in spice netlists and parse the inputs defined by the
“subckt” definition.

• sp_write(): this function creates an empty spice file in write mode and calls sp_write_file().

• sp_write_file(): this function recursively writes the modules and sub-modules from the
data structure into the spice file created by sp_write().

6.1.2 Layout Hierarchy

The layout hierarchy is stroed in the layout class in hierarchy_layout.py. When the design
class is initialized for a module, a data structure for the layout hierarchy is created. The layout data
structure has two main components: a structure for the instances of sub-modules contained in the layout,
and a structure for the objects (such as shapes, labels, etc...) contained in the layout. The functions
included in the layout class are:

• def add_inst(self,name,mod,offset,mirror): adds an instance of a physical lay-
out (library cell, module, or parameterized cell) to the module. The input parameters are :

name - name for the instance.

mod - the associated spice module.

offset - the x-y coordinates, in microns, where the instance should be placed in the layout.

mirror - mirror or rotate the instance before it is added to the layout. Accepted values for mirror
are: "R0", "R90", "R180", "R270" ∗Currently, only “R0” works.
"MX" or "x", "MY" or "y", "XY" or "xy" (“xy” is equivalent to “R180”)

• add_rect(self,layerNumber,offset,width,height): adds a rectangle to the mod-
ule’s layout. The inputs are:

layernumber - the layer that the rectangle is to be drawn in.

offset - the x-y coordinates, in microns, where the rectangle’s origin will be placed in the layout.

width - the width of the rectangle, can be positive or negative value.

height - the height of the rectangle, can be positive or negative value.

• add_label(self,text,layerNumber,offset,zoom): adds a label to the layout. The
inputs are:

text - the text for the label

layernumber - the layer that the label is to be drawn in .

25

offset - the x-y coordinates, in microns, where the label will be placed in the layout.

zoom - magnification of the label (ex: “1e9”).

• add_path(self,layerNumber,coordinates,width): this function is under construc-
tion...

• gds_read(): reads in a GDSII file and creates a VlsiLayout() class for it.

• gds_write(): writes the entire GDS of the object to a file by gdsMill vlsiLayout() class
and calling the gds2writer() (see Sections 6.3.2 and 6.3.2.

• gds_write_file(): recursively the instances and objects in layout data structure to the gds
file.

• pdf_write(): this function is under construction...

6.2 Creating a New Design Module

Each module in the SRAM is its own Python class, which contains a design class, or data structure,
for the layout and spice. The design class (design.py) is initialized within the module class,
subsequently creating separate data structurse to hold the layout (hierarchy_layout) and spice
(hierarchy_spice) information. By having a class for each module, it is very easy to instatiate
instances of the modules in any level of the hierarchy. Follow these guidelines when creating a new
module:

• Derive your class from the design module:

class bitcell_array(design.design):

• Always use the python constructor __init__ method so that your class is initialized when an
object of the module is instatiated. The module parameters should also be declared:

def __init__(self, cols, rows):

• In the constructor, call the base class constructor with the name such as:

design.design.__init__(self,"bitcell_array")

• Add the pins that will be used in the spice netlist for your module using the add_pin() function
from the hierarchy_spice class.

self.add_pin("vdd")

• Create an instance of the module/library cell/parameterized cell that you want to add to your
module:

cell=bitcell.bitcell(cell_6t)

26

• Add the subckt/submodule instance to the spice hierarchy using the add_mod() function from
the hierarchy_spice class:

self.add_mod(cell)

• Add layout instance into your module’s layout hierarchy using the add_instance() function,
which takes a name, mod, offset, and mirror as inputs:

self.add_inst(name=name,mod=cell,offset=[x_off,y_off],mirror=x)

• Connect the pins of the instance that was just added by using the connect_pins function from
the hierarchy_spice class:

self.connect_inst([BL[%d]%col, BR[%d]%col, WL[%d]%row, gnd, vdd]).

The pins must be listed in the same order as they were added to the submodule. Also, an assertion
error will occur if there is a mismatch in the number of net connections.

• Do whatever else needs to be done. Add rectangles for power/ground rails or routing, add labels,
etc...

• Every module needs to have “self” height and width variable that can be accessed from outside of
the module class. These paramaters are commonly used for placing instances modules in a layout.
For library cells, the self.width and self.height variables are automatically parsed from
the GDSII layout using the cell_size() function in vlsi_layout. Users must define the
width and height of dynamically generated designs.

• Add a call to the DRC_LVS() function.

6.3 GDSII Files and GdsMill)

GDSII is the standard file used in indusrty to store the layout information of an integrated circuit. The
GDSII file is a stream file that consists of records and data types that hold the data for the various
instances, shapes, labels, etc.. in the layout. In OpenRAM, we utlize a nifty tool, called gdsMill, to read,
write, and manipulate GDSII files. GdsMill was developed by Michael Wieckowski at the University of
Michigan.

6.3.1 GDSII File Format

The format of gds file contains several parts, as it could be shown in Figure 18.

The first part is the gds file header, which the contains GDSII version number, date modified, date
last accessed, library, user units, and database units.

The second part is the list of structures. These structures contain geometries or references to other
structures of the layout in heirarchical form. Within a structure there are several kinds of records:

• Rectangle - basic geometry unit in a design, represent one layer of material in a circuit(i.e. a metal
pin). Five coordinates and layer number are stored in rectangle record.

27

GDS II Version 5
Date Modified:2013,4,28,17,2,41
Date Last Accessed:2013,4,28,17,2,41
Library: DEFAULT.DB
Units: 1 user unit=0.0005 database units, 1 database unit=<bound method
Gds2reader.ieeeDoubleFromIbmData of <gdsMill.gds2reader.Gds2reader instance
at 0x1280638>> meters.

Structure Name: Xn
 Drawing Layer: 11
 Data Type: 0
 XY Point: 10,25
 XY Point: 140,25
 XY Point: 140,-435
 XY Point: 10,-435
 XY Point: 10,25
 Reference Name:lptxnmos0.135_size0.09
 Mirror X:False
 Rotate:False
 Magnify:False
 XY Point: 0,0
 Purpose Layer: 0
 Mirror X:False
 Rotate:False
 Magnify:False
 Magnification:1000.0
 XY Point: 210,270
 Text String: G\00

 End of Structure.
End of GDS Library.

GDS file
Header

a structure
recordstructure

record list

GDS file
End

Figure 18: example of a GDSII file

• Structure Reference - a structure that is used in this structure. The information about this reference
will be used store as a structure in the same gds file.

• Text - a text record used for labels.

• Path - used to represent a wire.

• Boundary - defines a filled polygon.

• Array Reference - specifies an array of structure instances

• Node - Electrical nets may be specified with the NODE record

The last part is the tail of the GDSII file which ends the GDS Library.

FIXME: Provide a link to the complete GDSII specification.

28

6.3.2 GdsMill

As previously stated, GdsMill is a set of scripts that can be used to read, write, and manipulate GDSII
files.

The gds2 reader and gds2 writer: In GdsMill, the gds2_reader and gds2_writer classes
contain the various functions used to convert data between GDSII files and the vlsilayout class.
These classes process the data by iterating through every record in the GDS structures and check or
write every data record. The record type (see Section 6.3.1),is tracked and identified using flags.

FIXME: Do we need more information of these classes, or should we just point to the
GdsMill documentation?

The VlsiLayout Class: After the gds2_reader class reads in the records, the data has to be stored
in a way that can be easily used by our code. Thus, the VlsiLayout class is made to represent the lay-
out. VlsiLayout contains the same information as GDSII file but in a different way. VlsiLayout
stores records in data structures, which are defined in gdsPrimitives.py. Each record type has a
corresponding class defined in gdsPrimitives. Thus, a vlsilayout should at least contains following
member data:

• self.rootStructureName - name of the top design.

• self.structures -list of structure that are used in the class.

• self.xyTree - contains a list of all structure names that appeared in the design.

The VlsiLayout class also contains many functions for adding structures and records to a layout
class, but the important and most useful functions have been aggregated into a wrapper file. This wrapper
is called geometry.py and is located in the compiler directory.

6.3.3 OpenRAM-GdsMill Interface

Dynamically generated cells and arrays each need to build a VlsiLayout data structure to represent
the hierarchical layout. This is performed using various functions from the VlsiLayout class in
GdsMill, but the GdsMill file is very large and can be difficult to understand. To make things easier,
OpenRAM has its own wrapper class called geometry in geometry.py. This wrapper class ini-
tializes data structures for the instances and objects that will be added to the VlsiLayout class. The
functions add_inst(), add_rect(), add_label() in hierarchy_layout, add the struc-
tures to the geometry class, which is then written out to a GDSII file using VlsiLayout and the
gds2_writer.

User included library cells, which should be in gds files, can be used as dynamically generated cells
by using GDSMill. Cell information such as cell size and pin location can be obtained by using built in
functions in the VlsiLayout class.

Cell size can be finded by using the readLayoutBorder function of the VlsiLayout class. A
boundary layer should be drawn in each library cell to indicate the cell area. The readLayoutBorder

29

function will return the width and height of the boundary. If a boundary layer do not exist in the layout,
then measureSize can find the physical size cell. The first method is used as primary method in
auto_Measure_libcell the lib utility.py, while the second method is used as a back up one. Each
technolgy setup will import this utility function and read the library cell.

Pin location can be find by using the readPin function of the VlsiLayout class. The readPin
function will return the biggest boundary which covers the label and is at the same layer as the label is.

6.4 Technology Directory

The aim of creating technology directory is to make OpenRAM portable to different technologies. This
directory contains all the information related to the specific process/technology that is being used. In
OpenRAM, the default technology is FreePDK45, which has it own technolony directory in the trunk.
The technology-specific directory should consist of the following:

• Technology Setup FIle - In /techdir/setup_scripts, there should be a Python file that
sets up the PDK and defines anything necessary for a given technology. This file should be
named setup_openram_<techname>.py where techname is the name used to identify it in
configuration scripts.

• Technology-Specific Parameters - These parameters should include layer numbers and any de-
sign rules that may be needed for generating dynamic designs (DRC rules). The parameters
should be added in techname/tech/tech.py and optinally in a techname/layer.map
for DRC/LVS streaming.

• Library Cells - The library cells and corresponding spice netlists should be added to the techname/gds_lib
and techname/sp_lib directories.

• Spice Models - If models are not supplied in the PDK, they can be placed in the technology
directory as done in SCMOS.

The height and width of library cells is determined by the bounding box of all geometries. Some-
times this is not desired, for example, when a rail must be shared. In this case, the boundary layer in the
technology file is used to define the height and width of the cell.

Pins are recognized in library cells by the largest rectangle that encloses the pin label text. Multiple
pins with the same name are supported. Pins with the same name such as gnd are assumed to be “must
connect” which requires that they later be connected.

For more information regarding the technology directory and how to set one up for a new technology,
refer to Section 8

6.5 DRC/LVS Interface

Each design class contains a function DRC_LVS() that performs both DRC and LVS on the current
design module. This enables bottom-up correct-by-construction design and easy identification of where
errors occur. It does incur some run-time overhead and can be disabled on the command line. The
DRC_LVS() function saves a GDSII file and a Spice file into a temporary directory and then calls two
functions to perform DRC and LVS that are tool-dependent.

30

Wrapper implementation for DRC and LVS functions are provided for the open-source tools Magic+Netgen
and the commercial tool, Cadence Calibre. Each of these functions generates a batch-mode script or run-
set file which contains the options to correctly run DRC and LVS. The functions then parse the batch
mode output for any potential errors and returns the number of errors encountered.

The function run_drc() requires a cell name and a GDSII file. The cell name corresponds to the
top level cell in the GDSII file. For Calibre, it also uses the layer map file for the technology to correctly
import the GDSII file into the Cadence database to perform DRC. The function returns the number of
DRC violations.

The function run_lvs() requires a cell name, a GDSII file, and a Spice file. Magic or Calibre
will extract an extracted Spice netlist from the GDSII file and will then compare this netlist with the
OpenRAM Spice netlist. The function returns the number of errors encountered if there is an LVS
mismatch.

For both DRC and LVS, the summary file and other report files are left in the OpenRAM temporary
directory after DRC/LVS is run. These report files can be examined to further understand why errors
were encountered. In addition, by increasing the debug level with one or more “-v” command-line
parametres, the command to re-create the DRC/LVS check can be obtained and run manually.

7 Custom Layout Design Functions in Software

OpenRAM provides classes that can be used to generated parameterized cells for the most common
cells: transistors, inverters, nand2, nand3, etc... There are many advantages to having parameterized
cells. The main advantage is that it makes it easier to dynamically generate designs and cuts down
the necessary code to be written. We also need parameterized cells because some designs, such as the
wordline drivers, need to be dynamically sized based on the size of the memory. Lastly, there may be
certain physical dimension requirements that need to be met for a cell, while still maintaing the expected
operation/performance. In OpenRAM we currently provide five parameterized cells: parameterized
transistor (ptx), parameterized inverter (pinv), parameterized nand2 (nand_2), parameterized nand3
(nand_3) and parameterized nor2 (nor_2).

7.1 Parameterized Transistor

The parameterized transistor class generates a transistor of specified width and number of mults. The
ptx is constructed as follows:

def __init__(self,name,width,mults,tx_type)

An explanation of the ptx parameters is shown in Table 2. A layout of ptx, generated by the
following instatiation, is depicted in Figure 19.

fet = ptx.ptx(name = "nmos_1_finger", width = tech.drc["minwidth_tx"],
mults = 1, tx_type = "nmos").

31

Parameter Explanation
width active height
mults mult number of the transistor
tx_type type of transistor,nmos and pmos

Table 2: Parameter Explanation of ptx

Finger Number 3

width = tech.drc["minwidth_tx"]

Figure 19: An example of Parameterized Transistor (ptx)

7.2 Parameterized Inverter

The parameterized inverter (pinv) class generated an inverter of a specified size/strength and height.
The pinv is constructed as follows:

def __init__(self, cell_name, size, beta=tech.[pinv.beta],
cell_size=tech.cell[height])

The parameterized inverter can provide significant drive strength while adhering to physical cell size
limitations. That is achieved by having many small transistors connected in parallel, thus the height of
the inverter cell can be manipulated without the affecting the drive strength. The NMOS size is an input
parameter, and the PMOS size will be determined by beta ∗NMOS size, where beta is the ratio of the
PMOS channel width to the NMOS channel width. The following code instatiates the pinv instance
seen in Figure 20.

a=pinv.pinv(cell_name="pinv",size=tech.drc["minwidth_tx"]*8)

The pinv parameters are explained in Table 3.

7.3 Parameterized NAND2

The parameterized nand2 (nand_2) class generated a 2-input nand gate of a specified size/strength and
height. The nand_2 is constructed as follows:

def __init__(self, name, nmos_width, height=tech.cell_6t[height])

32

nmos_size=size pmos_size=size*beta

cell_size=cell_size=tech.cell["height"]

Figure 20: An example of Parameterized Inverter(pinv)

Parameter Explanation
size The logic size of the transistor of the nmos in the pinv
beta = tech.[pinv.beta] Ratio of pmos channel width to nmos channel width.
cell_size = tech.cell[height] physical dimension of cell height.

Table 3: Parameter Explanation of pinv

The NMOS size is an input parameter, and the PMOS size will be equal to NMOS to have the equal
rising and falling for output. The following code instatiates the nand_2 instance seen in Figure 21.

a=nand_2.nand_2(name="nand2", nmos_width=2*tech.drc["minwidth_tx"],
height=tech.cell_6t["height"])

The nand_2 parameters are explained in Table 4.

33

Figure 21: An example of Parameterized NAND2(nand 2)

Parameter Explanation
nmos_width The logic size of the transistor of the nmos in the nand2
height = tech.cell 6t[height] physical dimension of cell height.

Table 4: Parameter Explanation of nand2

7.4 Parameterized NAND3

The parameterized nand3 (nand_3) class generated a 3-input nand gate of a specified size/strength and
height. The nand_3 is constructed as follows:

def __init__(self, name, nmos_width, height=tech.cell_6t[height])

The NMOS size is an input parameter, and the PMOS size will be equal to 2/3 NMOS size to have
the equal rising and falling for output. The following code instatiates the nand_3 instance seen in
Figure 22.

a=nand_3.nand_3(name="nand3", nmos_width=3*tech.drc["minwidth_tx"],
height=tech.cell_6t["height"])

Figure 22: An example of Parameterized NAND3(nand 3)

The nand_3 parameters are explained in Table 5.

Parameter Explanation
nmos_width The logic size of the transistor of the nmos in the nand3
height = tech.cell 6t[height] physical dimension of cell height.

Table 5: Parameter Explanation of nand3

7.5 Parameterized NOR2

The parameterized nor2 (nor_2) class generated a 2-input nor gate of a specified size/strength and
height. The nor_2 is constructed as follows:

def __init__(self, name, nmos_width, height=tech.cell_6t[height])

The NMOS size is an input parameter, and the PMOS size will be equal to 2 NMOS size to have the
equal rising and falling for output. The following code instatiates the nor_2 instance seen in Figure 23.

a=nor_2.nor_2(name="nor2", nmos_width=2*tech.drc["minwidth_tx"],
height=tech.cell_6t["height"])

The nor_2 parameters are explained in Table 6.

34

Figure 23: An example of Parameterized NOR2(nor 2)

Parameter Explanation
nmos_width The logic size of the transistor of the nmos in the nor2
height = tech.cell 6t[height] physical dimension of cell height.

Table 6: Parameter Explanation of nor2

7.6 Path and Wire

OpenRam provides two routing classes in custom layout design. Both Path and wire class will take a set
of coordinates connect those points with rectilinear metal connection.

The difference is that path only use the same layers for both vertical and horizontal connection while
wire will use two different adjacent metal layers. The this example will construct a metal1 layer path

layer_stack = ("metal1")
position_list = [(0,0), (0,3), (1,3), (1,1), (4,3)]
w=path.path(layer_stack,position_list)

and This exmaple will construct a wire using metal1 for vertical connection and metal2 for horizontal
connection:

layer_stack = ("metal1","via1","metal2")
position_list = [(0,0), (0,3), (1,3), (1,1), (4,3)]
w=wire.wire(layer_stack,position_list)

35

8 Porting to a new Technologies

The folllowing sub-directories and files should be added to your new technology directory:

• /sp_lib - spice netlists for library cells

• /gds_lib - GDSII files for the library cell

• layers.map - layer/purpose pair map from the technology

• /tech - contains tech parameters, layers, and portation functions.

8.1 The GDS and Spice Libraries

The GDS and Spice libraries , \gds_lib and \sp_lib, should contain the GDSII layouts and spice
netlists for each of the library cells in your SRAM design. For the FreePDK45 technology, library cells
for the 6T Cell, Sense Amp, Write Driver, Flip-Flops, and Control Logic are provided. To reiterate:
all layouts must be exported in the GDSII file format. The following commands can be used to stream
GDSII files into or out of Cadence Virtuoso:

To stream out of Cadence:

strmout -layerMap ../sram_lib/layers.map
-library sram -topCell $i -view layout

-strmFile ../sram_lib/$i.gds

To stream a layout back into Cadence:

strmin -layerMap ../sram_lib/layers.map
-attachTechFileOfLib NCSU_TechLib_FreePDK45

-library sram_4_32 -strmFile sram_4_32.gds

When you import a gds file, make sure to attach the correct tech lib or you will get incorrect layers in
the resulting library.

8.2 Technology Directory

Inside of the /tech directory should be the Python classes for tech.py, ptx_port.py, and any
other portation functions. The tech.py file is very important and should contain the following:

• Layer Number/Name - GDSII files only contain layer numbers and it can be difficult to keep track
of which layer corresponds to what number. In OpenRAM code, layers are referred to by name
and tech.py maps the layer names that we use to the layer numbers in the layer.map This
will associate the layer name used in OpenRAM program with the number used in the layer.map,
thus the code in complier wont need to be changed for each technology.

36

• Tech Parameters - important rules from the DRC rule deck(such as layer spacing and minimum
sizes) should be included here. Please refer to the rules that are included in tech.py to get a
better idea as to what is important.

• Cell Sizes and Pin Offsets - The cell_size() and pin_finder() functions should be used
to populate this class with the various cell sizes and pin locations in your library cells. These
functions are relatively slow because they must traverse the every shape in the entire hierarchy of
a design. Due to this fact, these function are not invoked each time the compiler is run, it should
be run one time or if any changes have been made to library cells. This sizes and pin locations
gathered are needed to generate the dynamic cells and perform routing at the various levels of the
hierarchy. It is suggested that boundary boxes on a specific layer should be added to define the
cell size.

9 Timing and Control Logic

This section outlines the necessary signals, timing considerations, and control circuitry for a syn-
chronous SRAM.

9.1 Signals

Top-Level Signals:

• ADDR - address bus.

• DATA - bi-directional data bus.

• clk - the global clock.

• OEb - active low output enable.

• CSb - active low chip select.

• WEb - active low write enable.

Internal Signals:

• clk bar - enables the precharge unit.

• s en - enables the sense amp during a read operation.

• w en - enable the write driver during a write operation.

• tri en and tri en bar - enable the data input tri-gate during a read operation.

9.2 Timing Considerations

The main timing considerations for an SRAM are:

• Setup Time - time an input needs to be stable before the positive/negative clock edge.

• Hold Time - time an input needs to stay valid after the positive/negative clock edge.

37

CLK

ADDR

CSb

OEb

WEb

DATA OUT

A0 A1

D0 D1

Setup Hold

Setup Hold

Read Delay

Setup

SCLK

Figure 24: Timing diagram for read operation showing the setup, hold, and read times.

• Minimun Cycle Time - time inbetween subsequent memory operations.

• Memory Read Time - time from negative clock edge until valid data appears on the data bus.

• Memory Write Time - time from negative clock edge until data has been driven into a memory
cell.

9.3 SRAM Operation

Read Operation:

1. Before the clock transition (low to high) that initiates the read operation:

(a) The chip must be selected (CSb low).

(b) The WEb must be high (read).

(c) The row and column addresses must be applied to the address input pins (ADDR).

(d) OEb should be selected (OEb low).

38

2. On the rising edge of the clock (CLK):

(a) The control signals and address are latched into flip-flops and the read cycle begins.

(b) The precharging of the bit lines starts.

(c) The address bits become available for the decoder and column mux, which select the row
and columns that we want to read from.

3. On the falling edge of the clock (CLK):

(a) Word line is driven onto the bitlines, the value stored in the memory cells pulls down one of
the bitlines (bl if a 0 is stored, br if a 1 is stored).

(b) s en enables the sense amplifier which senses the voltage difference of the bit lines, produces
the output and keeps the value in its latch circuitry.

(c) Tri-gate drives (tri en and tri en bar) the output data on data bus. Data remains valid on the
data bus for a complete clock cycle.

Write Operation:

1. Before the clock transition (low to high) that initiates the write operation:

(a) The chip must be selected (CSb low).

(b) The WEb must be low to enable the data input tristates.

(c) The row and column addresses must be applied to the address input pins (ADDR).

(d) OEb must be high (no output is available and sense amp disabled)

2. On the rising edge of the clock (CLK):

(a) OEb stays high (no output is available and sense amp disabled)

(b) The inputs addresses are latched into flip-flops, precharging starts, and the write operation
begins.

(c) The address bits become available for the decoder and column mux, which select the row
and columns that we want to write to.

3. On the falling edge of the clock (CLK):

(a) The data to be written must be applied to DATA and latched into flip-flops.

(b) w en enables the write driver, which drives the data input through the column mux and into
the selected memory cells. The write delay is the time from the negative clock edge until
the data value is stored in the memory cell on node X.

9.4 Zero Bus Turnaround (ZBT)

In timing of SRAM, during a read operation, data should be available after the clock edge while during
a write, data should be set up before the clock edge. Due to this issue a wait state (dead cycle) is
neccessary when SRAM switches from read mode to write mode. To avoide dead cycles in SRAM
timing which slow down the operation and degrade the performance of SRAM, Zero Bus turnaround
(ZBT) technique is used. Using ZBT, during a write, data is set up after positive clock edge and before

39

CLK

ADDR

CSb

OEb

WEb

DATA IN

A0 A1

D0
D1

Setup Hold

Setup Hold

Setup

Setup Hold

D0 D1X
Mem Cell

Write Delay

Figure 25: Timing diagram for write operation showing the setup, hold, and write times.

negative clock edge and input data is latched in negative edge flip-flops. Using ZBT, we will get a higher
memory throughput and there is no waite states. Figure 25 shows the correct timing for input signals
during the write opertion to avoide the wait states. Figure 26 shows how a write cycle is followed by a
read cycle with no wait state through using ZBT. Input address bits should be ready before positive edge
to be loaded to positive edge flip-flops. Output data is ready to be loaded to data-bus during seconde
half of cycle (after negative edge of clock) and input data should be ready before negative edge of clock
to be loaded in negative edge flip-flops.

9.5 Control Logic

The control circuitry ensures that the SRAM operates as intended during a read or write cycle by en-
abling the necessary structures in the SRAM. As shown in Figure 27, the control logic takes three active
low signals as inputs: chip select bar (CSb), output enable bar (OEb), and write enable bar (WEb).
CSb enables the entire SRAM chip. When CSb is low, the appropriate control signals are generated
and sent to the architecture blocks. Conversely, if CSb is high then no control signals are generated and

40

Figure 26: (a) Zero Bus Turnaround timing.

SRAM is turned off or disabled. The OEb signal signifies a read operation; while it is low the value
seen on the data bus will be an output from the memory. Similarly, the WEb signal signifies a write
operation. All of the input control signals are latched with master-slave flip-flops, ensuring that the con-
trol signal stays valid for the entire operation cycle. The control signal flip-flops use the normal clock to
generate local signals used to enable or disable structures based on the operation. Address flip-flops are
combined with global clock as well. In a standard write SRAM, switching from a read to a write opera-
tion results in a dead cycle. To avoid this dead cycle, Data flip-flops are latched with clk bar in order to
have a Zero Bus Turnaround (ZBT) memory. More details on ZBT timing are outlined in Section 9.4.
After all control signals are latched, they are ANDED with the clk bar because the read/write circuitries
should only be enabled after the precharging of the bitlines had ended on the negative edge of the clock.
The w en signal enables the write driver during a write to the memory .The s en signal is generated
using a Replica Bitline (RBL) to enable the sense amplifier during a read operation. Details on RBL
architecture are outlined in section 9.6. tri en and tri en bar enable the tristates during read in order to
drive the outputs onto the data bus. Table 7 shows the truth table for the control logic. The s en signal to
enable the sense amplifier is true when (CS.OE.Clk bar) is true. Similarly, write driver enable signal,
w en, is true when (CS.WE.clk bar) is true. tri en and tri en bar are true when ¬(OEb bar|clk)
and ¬(OEb.clk bar) are true, respectively.

Operation Inputs Outputs
CSb OEb WEb s en w en tri en

READ 0 0 1 1 0 1
WRITE 0 1 0 0 1 0

Table 7: Generation of control signals.

9.6 Replica Bitline Delay

In SRAM read operation, discharging the bitline is the most time consuming procedure. Generally, sense
amplifier amplifies the small voltage difference on the bitlines at the proper sense timing, to realize high-
speed operation. Therefore, the timing for sense amplifier (s en) is extremely important for the high
speed and low power SRAM. If the s en arrives early before the bitline difference reaches the sense

41

Figure 27: (a) Control Logic diagram and (b) Replica Bitline Schematic.

amplifier input transistors offset voltage, a read functional failure may occur. Contrarily, a late-arrived
s en would consume more unnecessary time, thereby wasting the power. The conventional way of

42

generating s en signal is to use a replica bitline (RBL). RBL as shown in 28 consists of a column
of SRAM cells (dummy cells), which track the random process variation in array. RBL is presented
for matching the delay of the activation of the sense amplifier with the delay of the propagation of the
required voltage swing at the bitlines. In RBL technique, delay driven memory cell in control path
is same as read path. Therefore the delay shift of control path according to the Process, Voltage and
Temperature (PVT) variation is same ratio as that of read path. The RBL technique attains self-timed
tracking with optimal s en timing according to PVT variation. Using replica circuits, the variation on
the delay of the sense amp activation and bitline swing is minimized.

Figure 28: Replica Bitline Schematic

RBL technique uses a Replica Cell (RC) driving a short bitline signal. The short bitlineś capaci-
tance is set to be a fraction of the main bitline capacitance (e.g. one tenth). This fraction is determined
by the required bitline swing (bitline voltages larger than offset voltage at input transistors of sense
amplifier) for proper sensing. So in SRAM, an extra column block is converted into the replica column
whose capacitance is the desired fraction of the main bitline. Therefore, its capacitance ratio to the main

43

bitlines is set purely by the ratio of the geometric lengths (e.g. one tenth). The RC is hard wired to store
a zero such that it will discharge the RBL once it is accessed. Because of its similarity with the actual
memory cell (in terms of design and fabrication) the delay of RBL tracks the delay of real bitlines very
well and can be made roughly equal. Figure 29 shows the schematic of the 6T replica cell. The timing
for s en is generated as follows. At first, the RBL and the normal bitlines are precharged to VDD.
Next, selected memory cells and RC are activated. RC draws the current from the RBL and normal
bitlines are also discharged through the accessed cell. Discharged swing on RBL is inverted and then
buffered to generate the signal to enable the sense amplifier.

Figure 29: Replica Bitline Schematic

9.7 Timing and Power Characterizer

The section will provide an explanantion of the characterizer that will generete spice stimuli for the
top-level SRAM and perform spice timing simulations to determine the memory setup&hold times, the
write delay, and read delay. It will also provide a spice power estimate.

10 Unit Tests

OpenRAM comes with a unit testing framework based on the Python unittest framework. Since Open-
RAM is technology independent, these unit tests can be run in any technology to verify that the tech-
nology is properly ported. By default, FreePDK45 is supported.

The unit tests consist of the following tests that test each module/sub-block of OpenRAM:

• 00_code_format_check__test.py - Checks the format of the codes. returns error if finds
TAB in codes.

• 01_library_drc_test.py - DRC of library cells in technology gds_lib

• 02_library_lvs_test.py - LVS of library cells in technology gds_lib and sp_lib

44

• 03_contact_test.py - Test contacts/vias of different layers

• 03_path_test.py - Test different types of paths based off of the wire module

• 03_ptx_test.py - Test various sizes/fingers of PMOS and NMOS parameterized transistors

• 03_wire_test.py - Test different types of wires with different layers

• 04_pinv_test.py - Test various sizes of parameterized inverter

• 04_nand_2_test.py - Test various sizes of parameterized nand2

• 04_nand_3_test.py - Test various sizes of parameterized nand3

• 04_nor_2_test.py - Test various sizes of parameterized nor2

• 04_wordline_driver_test.py - Test a wordline driver array.

• 05_array_test.py - Test a small bit-cell array

• 06_nand_decoder_test.py - Test a dynamic NAND address decoder

• 06_hierarchical_decoder_test.py - Test a dynamic hierarchical address decoder

• 07_tree_column_mux_test.py - Test a small tree column mux.

• 07_single_level_column_mux_test.py - Test a small single level column mux.

• 08_precharge_test.py - Test a dynamically generated precharge array

• 09_sense_amp_test.py - Test a sense amplifier array

• 10_write_driver_test.py - Test a write driver array

• 11_ms_flop_array_test.py - Test a MS FF array

• 13_control_logic_test.py - Test the control logic module

• 14_delay_chain_test.py - Test a delay chain array

• 15_tri_gate_array_test.py - Test a tri-gate array

• 16_replica_bitline_test.py - Test a replica bitline

• 19_bank_test.py - Test a bank

• 20_sram_test.py - Test a complete small SRAM

• 21_timing_sram_test.py - Test timing of SRAM

• 22_sram_func_test.py - Test functionality of SRAM

Each unit test instantiates a small component and performs DRC/LVS. Automatic DRC/LVS in-
side OpenRAM is disabled so that Python unittest assertions can be used to track failures, errors, and
successful tests as follows:

45

self.assertFalse(calibre.run_drc(a.cell_name,tempgds))
self.assertFalse(calibre.run_lvs(a.cell_name,tempgds,tempspice))

Each of these assertions will trigger a test failure. If there are problems with interpreting modified code
due to syntax errors, the unit test framework will not capture this and it will result in an Error.

10.1 Usage

A regression script is provided to check all of the unit tests by running:

python tests/regress.py

from the compiler directory located at: ”OpenRAM/trunk/compiler/”. Each individual test can be run
by running:

python tests/{unit-test file}
e.g. python tests/05_array_test.py

from the compiler directory located at: ”openram/trunk/compiler/”. As an example, the unit tests all
complete and provide the following output except for the final 20_sram_test which has 2 DRC
violations:

[trunk/compiler]$ python tests/regress.py
runTest (01_library_drc_test.library_drc_test) ... ok
runTest (02_library_lvs_test.library_lvs_test) ... ok
runTest (03_contact_test.contact_test) ... ok
runTest (03_path_test.path_test) ... ok
runTest (03_ptx_test.ptx_test) ... ok
runTest (03_wire_test.wire_test) ... ok
runTest (04_pinv_test.pinv_test) ... ok
runTest (04_nand_2_test.nand_2_test) ... ok
runTest (04_nand_3_test.nand_3_test) ... ok
runTest (04_nor_2_test.nor_2_test) ... ok
runTest (04_wordline_driver_test.wordline_driver_test) ... ok
runTest (05_array_test.array_test) ... ok
runTest (06_hierdecoder_test.hierdecoder_test) ... ok
runTest (07_single_level_column_mux_test.single_level_column_mux_test) ... ok
runTest (08_precharge_test.precharge_test) ... ok
runTest (09_sense_amp_test.sense_amp_test) ... ok
runTest (10_write_driver_test.write_driver_test) ... ok
runTest (11_ms_flop_array_test.ms_flop_test) ... ok
runTest (13_control_logic_test.control_logic_test) ... ok
runTest (14_delay_chain_test.delay_chain_test) ... ok
runTest (15_tri_gate_array_test.tri_gate_array_test) ... ok
runTest (19_bank_test.bank_test) ... ok
runTest (20_sram_test.sram_test) ... ok

46

If there are any DRC/LVS violations during the test, all the summary,output,and error files will be
generated in the technology directory’s ”openram temp” folder. One would view those files to determine
the cause of the DRC/LVS violations.

More information on the Python unittest framework is available at

http://docs.python.org/2/library/unittest.html.

11 Debug Framework

All output in OpenRAM should use the shared debug framework. This is still under development but is
in a usable state. It is going to be replaced with the Python Logging framework which is quite simple.

All of the debug framework is contained in debug.py and is based around the concept of a “debug
level” which is a single global variable in this file. This level is, by default, 0 which will output normal
minimal output. The general guidelines for debug output are:

• 0 Normal output

• 1 Verbose output

• 2 Detailed output

• 3+ Excessively detailed output

The debug level can be adjusted on the command line when arguments are parsed using the “-v”
flag. Adding more “-v” flags will increase the debug level as in the following examples:

python tests/01_library_drc_test.py -vv
python openram.py 4 16 -v -v

which each put the program in debug level 2 (detailed output).

Since every module may output a lot of information in the higher debug levels, the output format
is standardized to allow easy searching via grep or other command-line tools. The standard output
formatting is used through three interface functions:

• debug.info(int, msg)

• debug.warning(msg)

• debug.error(msg)

The msg string in each case can be any string format including data or other useful debug information.
The string should also contain information to make it human understandable. It should not just be a
number! The warning and error messages are independent of debug levels while the info message will
only print the message if the current debug level is above the parameter value.

The output format of the debug info messages are:

47

http://docs.python.org/2/library/unittest.html

[module]: msg

where module is the calling module name and msg is the string provided. This enables a grep command
to get the relevant lines. The warning and error messages include the file name and line number of the
warning/error.

GDSMill

OpenRAM uses gdsMill, a GDS library written by Michael Wieckowski at the University of Michigan.
Michael gave us complete permission to use the code. Since then, we have made several bug and
performance enhancements to gdsMill. In addition, gdsMill is no longer available on the web, so we
distribute it along with OpenRAM.

From: Michael Wieckowski <wieckows@umich.edu>
Date: Thu, Oct 14, 2010 at 12:49 PM
Subject: Re: GDS Mill
To: Matthew Guthaus <mrg@soe.ucsc.edu>

Hi Matt,

Feel free to use / modify / distribute the code as you like.

-Mike

On Oct 14, 2010, at 3:07 PM, Matthew Guthaus wrote:
> Hi Michael (& Dennis),
>
> A student and I were looking at your GDS tools, but
> we noticed that there is no license. What is the license?
>
> Thanks,
>
> Matt

48

	License
	Introduction
	Requirements
	Environment Variables
	Usage

	Overview of the SRAM Structure
	Inputs/Outputs
	Top-Level SRAM Module

	Modules
	The Bitcell and Bitcell Array
	Precharge Circuitry
	Address Decoders
	Wordline Driver
	Column Mux
	Sense Amplifier
	Write Driver
	Flip-Flop Array
	Control Logic

	Bank and SRAM
	Software Implementation
	Design Hierarchy
	Creating a New Design Module
	GDSII Files and GdsMill)
	Technology Directory
	DRC/LVS Interface

	Custom Layout Design Functions in Software
	Parameterized Transistor
	Parameterized Inverter
	Parameterized NAND2
	Parameterized NAND3
	Parameterized NOR2
	Path and Wire

	Porting to a new Technologies
	The GDS and Spice Libraries
	Technology Directory

	Timing and Control Logic
	Signals
	Timing Considerations
	SRAM Operation
	Zero Bus Turnaround (ZBT)
	Control Logic
	Replica Bitline Delay
	Timing and Power Characterizer

	Unit Tests
	Usage

	Debug Framework

