import numpy as np import string from itertools import tee import debug from vector3d import vector3d from cell import cell import os try: import Queue as Q # ver. < 3.0 except ImportError: import queue as Q class grid: """A two layer routing map. Each cell can be blocked in the vertical or horizontal layer. """ def __init__(self): """ Create a routing map of width x height cells and 2 in the z-axis. """ # costs are relative to a unit grid # non-preferred cost allows an off-direction jog of 1 grid # rather than 2 vias + preferred direction (cost 5) self.VIA_COST = 2 self.NONPREFERRED_COST = 4 self.PREFERRED_COST = 1 # list of the source/target grid coordinates self.source = [] self.target = [] # let's leave the map sparse, cells are created on demand to reduce memory self.map={} # priority queue for the maze routing self.q = Q.PriorityQueue() def set_blocked(self,n): self.add_map(n) self.map[n].blocked=True def is_blocked(self,n): self.add_map(n) return self.map[n].blocked def set_source(self,n): self.add_map(n) self.map[n].source=True self.source.append(n) def set_target(self,n): self.add_map(n) self.map[n].target=True self.target.append(n) def reinit(self): """ Reinitialize everything for a new route. """ self.reset_cells() # clear source and target pins self.source=[] self.target=[] # clear the queue while (not self.q.empty()): self.q.get(False) def add_blockage_shape(self,ll,ur,z): debug.info(3,"Adding blockage ll={0} ur={1} z={2}".format(str(ll),str(ur),z)) for x in range(int(ll[0]),int(ur[0])+1): for y in range(int(ll[1]),int(ur[1])+1): n = vector3d(x,y,z) self.set_blocked(n) def add_blockage(self,block_list): debug.info(3,"Adding blockage list={0}".format(str(block_list))) for n in block_list: self.set_blocked(n) def add_source(self,track_list): debug.info(3,"Adding source list={0}".format(str(track_list))) for n in track_list: if not self.is_blocked(n): self.set_source(n) def add_target(self,track_list): debug.info(3,"Adding target list={0}".format(str(track_list))) for n in track_list: if not self.is_blocked(n): self.set_target(n) def reset_cells(self): """ Reset the path and costs for all the grid cells. """ for p in self.map.values(): p.reset() def add_path(self,path): """ Mark the path in the routing grid for visualization """ self.path=path for p in path: self.map[p].path=True def route(self,detour_scale): """ This does the A* maze routing with preferred direction routing. """ # We set a cost bound of the HPWL for run-time. This can be # over-ridden if the route fails due to pruning a feasible solution. cost_bound = detour_scale*self.cost_to_target(self.source[0])*self.PREFERRED_COST # Make sure the queue is empty if we run another route while not self.q.empty(): self.q.get() # Put the source items into the queue self.init_queue() cheapest_path = None cheapest_cost = None # Keep expanding and adding to the priority queue until we are done while not self.q.empty(): # should we keep the path in the queue as well or just the final node? (cost,path) = self.q.get() debug.info(2,"Queue size: size=" + str(self.q.qsize()) + " " + str(cost)) debug.info(3,"Expanding: cost=" + str(cost) + " " + str(path)) # expand the last element neighbors = self.expand_dirs(path) debug.info(3,"Neighbors: " + str(neighbors)) for n in neighbors: # node is added to the map by the expand routine newpath = path + [n] # check if we hit the target and are done if self.is_target(n): return (newpath,self.cost(newpath)) elif not self.map[n].visited: # current path cost + predicted cost current_cost = self.cost(newpath) target_cost = self.cost_to_target(n) predicted_cost = current_cost + target_cost # only add the cost if it is less than our bound if (predicted_cost < cost_bound): if (self.map[n].min_cost==-1 or current_cost=0 and not self.is_blocked(down) and not down in path: neighbors.append(down) return neighbors def add_map(self,p): """ Add a point to the map if it doesn't exist. """ if p not in self.map.keys(): self.map[p]=cell() def init_queue(self): """ Populate the queue with all the source pins with cost to the target. Each item is a path of the grid cells. We will use an A* search, so this cost must be pessimistic. Cost so far will be the length of the path. """ debug.info(4,"Initializing queue.") # uniquify the source (and target while we are at it) self.source = list(set(self.source)) self.target = list(set(self.target)) for s in self.source: cost = self.cost_to_target(s) debug.info(4,"Init: cost=" + str(cost) + " " + str([s])) self.q.put((cost,[s])) def hpwl(self, src, dest): """ Return half perimeter wire length from point to another. Either point can have positive or negative coordinates. Include the via penalty if there is one. """ hpwl = max(abs(src.x-dest.x),abs(dest.x-src.x)) hpwl += max(abs(src.y-dest.y),abs(dest.y-src.y)) hpwl += max(abs(src.z-dest.z),abs(dest.z-src.z)) if src.x!=dest.x or src.y!=dest.y: hpwl += self.VIA_COST return hpwl def cost_to_target(self,source): """ Find the cheapest HPWL distance to any target point ignoring blockages for A* search. """ cost = self.hpwl(source,self.target[0]) for t in self.target: cost = min(self.hpwl(source,t),cost) return cost def cost(self,path): """ The cost of the path is the length plus a penalty for the number of vias. We assume that non-preferred direction is penalized. """ # Ignore the source pin layer change, FIXME? def pairwise(iterable): "s -> (s0,s1), (s1,s2), (s2, s3), ..." a, b = tee(iterable) next(b, None) return zip(a, b) plist = pairwise(path) cost = 0 for p0,p1 in plist: if p0.z != p1.z: # via cost += self.VIA_COST elif p0.x != p1.x: # horizontal cost += self.NONPREFERRED_COST if (p0.z == 1) else self.PREFERRED_COST elif p0.y != p1.y: # vertical cost += self.NONPREFERRED_COST if (p0.z == 0) else self.PREFERRED_COST else: debug.error("Non-changing direction!") return cost def get_inertia(self,p0,p1): """ Sets the direction based on the previous direction we came from. """ # direction (index) of movement if p0.x==p1.x: return 1 elif p0.y==p1.y: return 0 else: # z direction return 2