from math import log import design from tech import drc, parameter import debug import contact from pinv import pinv from pnand2 import pnand2 from pnand3 import pnand3 from pinvbuf import pinvbuf from dff_inv import dff_inv from dff_inv_array import dff_inv_array import math from vector import vector from globals import OPTS class control_logic(design.design): """ Dynamically generated Control logic for the total SRAM circuit. """ def __init__(self, num_rows): """ Constructor """ design.design.__init__(self, "control_logic") debug.info(1, "Creating {}".format(self.name)) self.num_rows = num_rows self.create_layout() self.DRC_LVS() def create_layout(self): """ Create layout and route between modules """ self.setup_layout_offsets() self.add_pins() self.create_modules() self.add_rails() self.add_modules() self.add_routing() def add_pins(self): """ Add the pins to the control logic module. """ for pin in self.input_list + ["clk"]: self.add_pin(pin,"INPUT") for pin in self.output_list: self.add_pin(pin,"OUTPUT") self.add_pin("vdd","POWER") self.add_pin("gnd","GROUND") def create_modules(self): """ add all the required modules """ dff = dff_inv() dff_height = dff.height self.ctrl_dff_array = dff_inv_array(rows=2,columns=1) self.add_mod(self.ctrl_dff_array) self.nand2 = pnand2(height=dff_height) self.add_mod(self.nand2) self.nand3 = pnand3(height=dff_height) self.add_mod(self.nand3) # Special gates: inverters for buffering # Size the clock for the number of rows (fanout) clock_driver_size = max(1,int(self.num_rows/4)) self.clkbuf = pinvbuf(clock_driver_size,height=dff_height) self.add_mod(self.clkbuf) self.inv = self.inv1 = pinv(size=1, height=dff_height) self.add_mod(self.inv1) self.inv2 = pinv(size=4, height=dff_height) self.add_mod(self.inv2) self.inv8 = pinv(size=16, height=dff_height) self.add_mod(self.inv8) from importlib import reload c = reload(__import__(OPTS.replica_bitline)) replica_bitline = getattr(c, OPTS.replica_bitline) # FIXME: These should be tuned according to the size! delay_stages = 4 # Must be non-inverting delay_fanout = 3 # This can be anything >=2 bitcell_loads = int(math.ceil(self.num_rows / 5.0)) self.replica_bitline = replica_bitline(delay_stages, delay_fanout, bitcell_loads) self.add_mod(self.replica_bitline) def setup_layout_offsets(self): """ Setup layout offsets, determine the size of the busses etc """ # These aren't for instantiating, but we use them to get the dimensions #self.poly_contact_offset = vector(0.5*contact.poly.width,0.5*contact.poly.height) # Have the cell gap leave enough room to route an M2 wire. # Some cells may have pwell/nwell spacing problems too when the wells are different heights. #self.cell_gap = max(self.m2_pitch,drc["pwell_to_nwell"]) # List of input control signals self.input_list =["csb","web"] self.dff_output_list =["cs_bar", "cs", "we_bar", "we"] # list of output control signals (for making a vertical bus) self.internal_bus_list = ["clk_buf", "clk_buf_bar", "we", "cs"] # leave space for the bus plus one extra space self.internal_bus_width = (len(self.internal_bus_list)+1)*self.m2_pitch # Ooutputs to the bank self.output_list = ["s_en", "w_en", "clk_buf_bar", "clk_buf"] # # with tri/tri_en # self.output_list = ["s_en", "w_en", "tri_en", "tri_en_bar", "clk_buf_bar", "clk_buf"] self.supply_list = ["vdd", "gnd"] def add_rails(self): """ Add the input signal inverted tracks """ height = 4*self.inv1.height - self.m2_pitch offset = vector(self.ctrl_dff_array.width,0) self.rail_offsets = self.create_vertical_bus("metal2", self.m2_pitch, offset, self.internal_bus_list, height) def add_modules(self): """ Place all the modules """ # Keep track of all right-most instances to determine row boundary # and add the vdd/gnd pins self.row_end_inst = [] # Add the control flops on the left of the bus self.add_dffs() # Add the logic on the right of the bus self.add_clk_row(row=0) # clk is a double-high cell self.add_we_row(row=2) # self.add_trien_row(row=3) # self.add_trien_bar_row(row=4) self.add_rbl_in_row(row=3) self.add_sen_row(row=4) self.add_rbl(row=5) self.add_lvs_correspondence_points() # This offset is used for placement of the control logic in # the SRAM level. self.control_logic_center = vector(self.ctrl_dff_inst.rx(), self.rbl_inst.by()) self.height = self.rbl_inst.uy() # Max of modules or logic rows self.width = max(self.rbl_inst.rx(), max([inst.rx() for inst in self.row_end_inst])) def add_routing(self): """ Routing between modules """ self.route_dffs() #self.route_trien() #self.route_trien_bar() self.route_rbl_in() self.route_wen() self.route_sen() self.route_clk() self.route_supply() def add_rbl(self,row): """ Add the replica bitline """ y_off = row * self.inv1.height + 2*self.m1_pitch # Add the RBL above the rows # Add to the right of the control rows and routing channel self.replica_bitline_offset = vector(0, y_off) self.rbl_inst=self.add_inst(name="replica_bitline", mod=self.replica_bitline, offset=self.replica_bitline_offset) self.connect_inst(["rbl_in", "pre_s_en", "vdd", "gnd"]) def add_clk_row(self,row): """ Add the multistage clock buffer below the control flops """ x_off = self.ctrl_dff_array.width + self.internal_bus_width (y_off,mirror)=self.get_offset(row) clkbuf_offset = vector(x_off,y_off) self.clkbuf_inst = self.add_inst(name="clkbuf", mod=self.clkbuf, offset=clkbuf_offset) self.connect_inst(["clk","clk_buf_bar","clk_buf","vdd","gnd"]) self.row_end_inst.append(self.clkbuf_inst) def add_rbl_in_row(self,row): x_off = self.ctrl_dff_array.width + self.internal_bus_width (y_off,mirror)=self.get_offset(row) # input: clk_buf_bar,CS output: rbl_in_bar self.rbl_in_bar_offset = vector(x_off, y_off) self.rbl_in_bar_inst=self.add_inst(name="nand3_rbl_in_bar", mod=self.nand2, offset=self.rbl_in_bar_offset, mirror=mirror) self.connect_inst(["clk_buf_bar", "cs", "rbl_in_bar", "vdd", "gnd"]) x_off += self.nand2.width # input: rbl_in_bar, output: rbl_in self.rbl_in_offset = vector(x_off, y_off) self.rbl_in_inst=self.add_inst(name="inv_rbl_in", mod=self.inv1, offset=self.rbl_in_offset, mirror=mirror) self.connect_inst(["rbl_in_bar", "rbl_in", "vdd", "gnd"]) self.row_end_inst.append(self.rbl_in_inst) def add_sen_row(self,row): """ The sense enable buffer gets placed to the far right of the row. """ x_off = self.ctrl_dff_array.width + self.internal_bus_width (y_off,mirror)=self.get_offset(row) # input: pre_s_en, output: pre_s_en_bar self.pre_s_en_bar_offset = vector(x_off, y_off) self.pre_s_en_bar_inst=self.add_inst(name="inv_pre_s_en_bar", mod=self.inv2, offset=self.pre_s_en_bar_offset, mirror=mirror) self.connect_inst(["pre_s_en", "pre_s_en_bar", "vdd", "gnd"]) x_off += self.inv2.width # BUFFER INVERTERS FOR S_EN # input: input: pre_s_en_bar, output: s_en self.s_en_offset = vector(x_off, y_off) self.s_en_inst=self.add_inst(name="inv_s_en", mod=self.inv8, offset=self.s_en_offset, mirror=mirror) self.connect_inst(["pre_s_en_bar", "s_en", "vdd", "gnd"]) self.row_end_inst.append(self.s_en_inst) def add_trien_row(self, row): x_off = self.ctrl_dff_array.width + self.internal_bus_width (y_off,mirror)=self.get_offset(row) x_off += self.nand2.width # BUFFER INVERTERS FOR TRI_EN tri_en_offset = vector(x_off, y_off) self.tri_en_inst=self.add_inst(name="inv_tri_en1", mod=self.inv2, offset=tri_en_offset, mirror=mirror) self.connect_inst(["pre_tri_en_bar", "pre_tri_en1", "vdd", "gnd"]) x_off += self.inv2.width tri_en_buf1_offset = vector(x_off, y_off) self.tri_en_buf1_inst=self.add_inst(name="tri_en_buf1", mod=self.inv2, offset=tri_en_buf1_offset, mirror=mirror) self.connect_inst(["pre_tri_en1", "pre_tri_en_bar1", "vdd", "gnd"]) x_off += self.inv2.width tri_en_buf2_offset = vector(x_off, y_off) self.tri_en_buf2_inst=self.add_inst(name="tri_en_buf2", mod=self.inv8, offset=tri_en_buf2_offset, mirror=mirror) self.connect_inst(["pre_tri_en_bar1", "tri_en", "vdd", "gnd"]) self.row_end_inst.append(self.tri_en_inst) def add_trien_bar_row(self, row): x_off = self.ctrl_dff_array.width + self.internal_bus_width (y_off,mirror)=self.get_offset(row) # input: OE, clk_buf_bar output: tri_en_bar tri_en_bar_offset = vector(x_off,y_off) self.tri_en_bar_inst=self.add_inst(name="nand2_tri_en", mod=self.nand2, offset=tri_en_bar_offset, mirror=mirror) self.connect_inst(["clk_buf_bar", "oe", "pre_tri_en_bar", "vdd", "gnd"]) x_off += self.nand2.width # BUFFER INVERTERS FOR TRI_EN tri_en_bar_buf1_offset = vector(x_off, y_off) self.tri_en_bar_buf1_inst=self.add_inst(name="tri_en_bar_buf1", mod=self.inv2, offset=tri_en_bar_buf1_offset, mirror=mirror) self.connect_inst(["pre_tri_en_bar", "pre_tri_en2", "vdd", "gnd"]) x_off += self.inv2.width tri_en_bar_buf2_offset = vector(x_off, y_off) self.tri_en_bar_buf2_inst=self.add_inst(name="tri_en_bar_buf2", mod=self.inv8, offset=tri_en_bar_buf2_offset, mirror=mirror) self.connect_inst(["pre_tri_en2", "tri_en_bar", "vdd", "gnd"]) x_off += self.inv8.width self.row_end_inst.append(self.tri_en_bar_buf2_inst) def route_dffs(self): """ Route the input inverters """ dff_out_map = zip(["dout_bar[{}]".format(i) for i in range(3)], ["cs", "we"]) self.connect_vertical_bus(dff_out_map, self.ctrl_dff_inst, self.rail_offsets) # Connect the clock rail to the other clock rail in_pos = self.ctrl_dff_inst.get_pin("clk").uc() mid_pos = in_pos + vector(0,self.m2_pitch) rail_pos = vector(self.rail_offsets["clk_buf"].x, mid_pos.y) self.add_wire(("metal1","via1","metal2"),[in_pos, mid_pos, rail_pos]) self.add_via_center(layers=("metal1","via1","metal2"), offset=rail_pos, rotate=90) self.copy_layout_pin(self.ctrl_dff_inst, "din[0]", "csb") self.copy_layout_pin(self.ctrl_dff_inst, "din[1]", "web") def add_dffs(self): """ Add the three input DFFs (with inverters) """ self.ctrl_dff_inst=self.add_inst(name="ctrl_dffs", mod=self.ctrl_dff_array, offset=vector(0,0)) self.connect_inst(self.input_list + self.dff_output_list + ["clk_buf"] + self.supply_list) def get_offset(self,row): """ Compute the y-offset and mirroring """ y_off = row*self.inv1.height if row % 2: y_off += self.inv1.height mirror="MX" else: mirror="R0" return (y_off,mirror) def add_we_row(self,row): x_off = self.ctrl_dff_inst.width + self.internal_bus_width (y_off,mirror)=self.get_offset(row) # input: WE, CS output: w_en_bar w_en_bar_offset = vector(x_off, y_off) self.w_en_bar_inst=self.add_inst(name="nand3_w_en_bar", mod=self.nand3, offset=w_en_bar_offset, mirror=mirror) self.connect_inst(["clk_buf_bar", "cs", "we", "w_en_bar", "vdd", "gnd"]) x_off += self.nand3.width # input: w_en_bar, output: pre_w_en pre_w_en_offset = vector(x_off, y_off) self.pre_w_en_inst=self.add_inst(name="inv_pre_w_en", mod=self.inv1, offset=pre_w_en_offset, mirror=mirror) self.connect_inst(["w_en_bar", "pre_w_en", "vdd", "gnd"]) x_off += self.inv1.width # BUFFER INVERTERS FOR W_EN pre_w_en_bar_offset = vector(x_off, y_off) self.pre_w_en_bar_inst=self.add_inst(name="inv_pre_w_en_bar", mod=self.inv2, offset=pre_w_en_bar_offset, mirror=mirror) self.connect_inst(["pre_w_en", "pre_w_en_bar", "vdd", "gnd"]) x_off += self.inv2.width w_en_offset = vector(x_off, y_off) self.w_en_inst=self.add_inst(name="inv_w_en2", mod=self.inv8, offset=w_en_offset, mirror=mirror) self.connect_inst(["pre_w_en_bar", "w_en", "vdd", "gnd"]) x_off += self.inv8.width self.row_end_inst.append(self.w_en_inst) def route_rbl_in(self): """ Connect the logic for the rbl_in generation """ rbl_in_map = zip(["A", "B"], ["clk_buf_bar", "cs"]) self.connect_vertical_bus(rbl_in_map, self.rbl_in_bar_inst, self.rail_offsets) # Connect the NAND3 output to the inverter # The pins are assumed to extend all the way to the cell edge rbl_in_bar_pos = self.rbl_in_bar_inst.get_pin("Z").center() inv_in_pos = self.rbl_in_inst.get_pin("A").center() mid1 = vector(inv_in_pos.x,rbl_in_bar_pos.y) self.add_path("metal1",[rbl_in_bar_pos,mid1,inv_in_pos]) # Connect the output to the RBL rbl_out_pos = self.rbl_in_inst.get_pin("Z").center() rbl_in_pos = self.rbl_inst.get_pin("en").center() mid1 = vector(rbl_in_pos.x,rbl_out_pos.y) self.add_wire(("metal3","via2","metal2"),[rbl_out_pos,mid1,rbl_in_pos]) self.add_via_center(layers=("metal1","via1","metal2"), offset=rbl_out_pos, rotate=90) self.add_via_center(layers=("metal2","via2","metal3"), offset=rbl_out_pos, rotate=90) def connect_rail_from_right(self,inst, pin, rail): """ Helper routine to connect an unrotated/mirrored oriented instance to the rails """ in_pos = inst.get_pin(pin).center() rail_pos = vector(self.rail_offsets[rail].x, in_pos.y) self.add_wire(("metal1","via1","metal2"),[in_pos, rail_pos]) self.add_via_center(layers=("metal1","via1","metal2"), offset=rail_pos, rotate=90) def connect_rail_from_right_m2m3(self,inst, pin, rail): """ Helper routine to connect an unrotated/mirrored oriented instance to the rails """ in_pos = inst.get_pin(pin).center() rail_pos = vector(self.rail_offsets[rail].x, in_pos.y) self.add_wire(("metal3","via2","metal2"),[in_pos, rail_pos]) # Bring it up to M2 for M2/M3 routing self.add_via_center(layers=("metal1","via1","metal2"), offset=in_pos, rotate=90) self.add_via_center(layers=("metal2","via2","metal3"), offset=in_pos, rotate=90) self.add_via_center(layers=("metal2","via2","metal3"), offset=rail_pos, rotate=90) def connect_rail_from_left(self,inst, pin, rail): """ Helper routine to connect an unrotated/mirrored oriented instance to the rails """ in_pos = inst.get_pin(pin).lc() rail_pos = vector(self.rail_offsets[rail].x, in_pos.y) self.add_wire(("metal1","via1","metal2"),[in_pos, rail_pos]) self.add_via_center(layers=("metal1","via1","metal2"), offset=rail_pos, rotate=90) def connect_rail_from_left_m2m3(self,inst, pin, rail): """ Helper routine to connect an unrotated/mirrored oriented instance to the rails """ in_pos = inst.get_pin(pin).lc() rail_pos = vector(self.rail_offsets[rail].x, in_pos.y) self.add_wire(("metal3","via2","metal2"),[in_pos, rail_pos]) self.add_via_center(layers=("metal2","via2","metal3"), offset=in_pos, rotate=90) self.add_via_center(layers=("metal2","via2","metal3"), offset=rail_pos, rotate=90) def route_wen(self): wen_map = zip(["A", "B", "C"], ["clk_buf_bar", "cs", "we"]) self.connect_vertical_bus(wen_map, self.w_en_bar_inst, self.rail_offsets) # Connect the NAND3 output to the inverter # The pins are assumed to extend all the way to the cell edge w_en_bar_pos = self.w_en_bar_inst.get_pin("Z").center() inv_in_pos = self.pre_w_en_inst.get_pin("A").center() mid1 = vector(inv_in_pos.x,w_en_bar_pos.y) self.add_path("metal1",[w_en_bar_pos,mid1,inv_in_pos]) self.add_path("metal1",[self.pre_w_en_inst.get_pin("Z").center(), self.pre_w_en_bar_inst.get_pin("A").center()]) self.add_path("metal1",[self.pre_w_en_bar_inst.get_pin("Z").center(), self.w_en_inst.get_pin("A").center()]) self.connect_output(self.w_en_inst, "Z", "w_en") def route_trien(self): # Connect the NAND2 output to the buffer tri_en_bar_pos = self.tri_en_bar_inst.get_pin("Z").center() inv_in_pos = self.tri_en_inst.get_pin("A").center() mid1 = vector(tri_en_bar_pos.x,inv_in_pos.y) self.add_wire(("metal1","via1","metal2"),[tri_en_bar_pos,mid1,inv_in_pos]) # Connect the INV output to the buffer tri_en_pos = self.tri_en_inst.get_pin("Z").center() inv_in_pos = self.tri_en_buf1_inst.get_pin("A").center() mid_xoffset = 0.5*(tri_en_pos.x + inv_in_pos.x) mid1 = vector(mid_xoffset,tri_en_pos.y) mid2 = vector(mid_xoffset,inv_in_pos.y) self.add_path("metal1",[tri_en_pos,mid1,mid2,inv_in_pos]) self.add_path("metal1",[self.tri_en_buf1_ist.get_pin("Z").center(), self.tri_en_buf2_inst.get_pin("A").center()]) self.connect_output(self.tri_en_buf2_inst, "Z", "tri_en") def route_trien_bar(self): trien_map = zip(["A", "B"], ["clk_buf_bar", "oe"]) self.connect_vertical_bus(trien_map, self.tri_en_bar_inst, self.rail_offsets) # Connect the NAND2 output to the buffer tri_en_bar_pos = self.tri_en_bar_inst.get_pin("Z").center() inv_in_pos = self.tri_en_bar_buf1_inst.get_pin("A").center() mid_xoffset = 0.5*(tri_en_bar_pos.x + inv_in_pos.x) mid1 = vector(mid_xoffset,tri_en_bar_pos.y) mid2 = vector(mid_xoffset,inv_in_pos.y) self.add_path("metal1",[tri_en_bar_pos,mid1,mid2,inv_in_pos]) self.add_path("metal1",[self.tri_en_bar_buf1_inst.get_pin("Z").center(), self.tri_en_bar_buf2_inst.get_pin("A").center()]) self.connect_output(self.tri_en_bar_buf2_inst, "Z", "tri_en_bar") def route_sen(self): rbl_out_pos = self.rbl_inst.get_pin("out").bc() in_pos = self.pre_s_en_bar_inst.get_pin("A").lc() mid1 = vector(rbl_out_pos.x,in_pos.y) self.add_wire(("metal1","via1","metal2"),[rbl_out_pos,mid1,in_pos]) #s_en_pos = self.s_en.get_pin("Z").lc() self.add_path("metal1",[self.pre_s_en_bar_inst.get_pin("Z").center(), self.s_en_inst.get_pin("A").center()]) self.connect_output(self.s_en_inst, "Z", "s_en") def route_clk(self): """ Route the clk and clk_buf_bar signal internally """ clk_pin = self.clkbuf_inst.get_pin("A") self.add_layout_pin_segment_center(text="clk", layer="metal2", start=clk_pin.bc(), end=clk_pin.bc().scale(1,0)) clkbuf_map = zip(["Z", "Zb"], ["clk_buf", "clk_buf_bar"]) self.connect_vertical_bus(clkbuf_map, self.clkbuf_inst, self.rail_offsets, ("metal3", "via2", "metal2")) # self.connect_rail_from_right_m2m3(self.clkbuf_inst, "Z", "clk_buf") # self.connect_rail_from_right_m2m3(self.clkbuf_inst, "Zb", "clk_buf_bar") self.connect_output(self.clkbuf_inst, "Z", "clk_buf") self.connect_output(self.clkbuf_inst, "Zb", "clk_buf_bar") def connect_output(self, inst, pin_name, out_name): """ Create an output pin on the right side from the pin of a given instance. """ out_pin = inst.get_pin(pin_name) right_pos=out_pin.center() + vector(self.width-out_pin.cx(),0) self.add_layout_pin_segment_center(text=out_name, layer="metal1", start=out_pin.center(), end=right_pos) def route_supply(self): """ Add vdd and gnd to the instance cells """ max_row_x_loc = max([inst.rx() for inst in self.row_end_inst]) for inst in self.row_end_inst: pins = inst.get_pins("vdd") for pin in pins: if pin.layer == "metal1": row_loc = pin.rc() pin_loc = vector(max_row_x_loc, pin.rc().y) self.add_power_pin("vdd", pin_loc) self.add_path("metal1", [row_loc, pin_loc]) pins = inst.get_pins("gnd") for pin in pins: if pin.layer == "metal1": row_loc = pin.rc() pin_loc = vector(max_row_x_loc, pin.rc().y) self.add_power_pin("gnd", pin_loc) self.add_path("metal1", [row_loc, pin_loc]) self.copy_layout_pin(self.rbl_inst,"gnd") self.copy_layout_pin(self.rbl_inst,"vdd") self.copy_layout_pin(self.ctrl_dff_inst,"gnd") self.copy_layout_pin(self.ctrl_dff_inst,"vdd") def add_lvs_correspondence_points(self): """ This adds some points for easier debugging if LVS goes wrong. These should probably be turned off by default though, since extraction will show these as ports in the extracted netlist. """ # pin=self.clk_inv1.get_pin("Z") # self.add_label_pin(text="clk1_bar", # layer="metal1", # offset=pin.ll(), # height=pin.height(), # width=pin.width()) # pin=self.clk_inv2.get_pin("Z") # self.add_label_pin(text="clk2", # layer="metal1", # offset=pin.ll(), # height=pin.height(), # width=pin.width()) pin=self.rbl_inst.get_pin("out") self.add_label_pin(text="out", layer=pin.layer, offset=pin.ll(), height=pin.height(), width=pin.width())