# See LICENSE for licensing information. # # Copyright (c) 2016-2019 Regents of the University of California and The Board # of Regents for the Oklahoma Agricultural and Mechanical College # (acting for and on behalf of Oklahoma State University) # All rights reserved. # import design import debug from tech import parameter, drc from tech import cell_properties as props import logical_effort class sense_amp(design.design): """ This module implements the single sense amp cell used in the design. It is a hand-made cell, so the layout and netlist should be available in the technology library. Sense amplifier to read a pair of bit-lines. """ def __init__(self, name="sense_amp"): super().__init__(name, prop=props.sense_amp) debug.info(2, "Create sense_amp") def get_bl_names(self): return "bl" def get_br_names(self): return "br" @property def dout_name(self): return "dout" @property def en_name(self): return "en" def get_cin(self): # FIXME: This input load will be applied to both the s_en timing and bitline timing. # Input load for the bitlines which are connected to the source/drain of a TX. Not the selects. from tech import spice # Default is 8x. Per Samira and Hodges-Jackson book: # "Column-mux transistors driven by the decoder must be sized for optimal speed" bitline_pmos_size = 8 # FIXME: This should be set somewhere and referenced. Probably in tech file. return spice["min_tx_drain_c"] * bitline_pmos_size # ff def get_stage_effort(self, load): # Delay of the sense amp will depend on the size of the amp and the output load. parasitic_delay = 1 cin = (parameter["sa_inv_pmos_size"] + parameter["sa_inv_nmos_size"]) / drc("minwidth_tx") sa_size = parameter["sa_inv_nmos_size"] / drc("minwidth_tx") cc_inv_cin = cin return logical_effort.logical_effort('column_mux', sa_size, cin, load + cc_inv_cin, parasitic_delay, False) def analytical_power(self, corner, load): """Returns dynamic and leakage power. Results in nW""" # Power in this module currently not defined. Returns 0 nW (leakage and dynamic). total_power = self.return_power() return total_power def get_enable_name(self): """Returns name used for enable net""" # FIXME: A better programmatic solution to designate pins enable_name = self.en_name debug.check(enable_name in self.pin_names, "Enable name {} not found in pin list".format(enable_name)) return enable_name def build_graph(self, graph, inst_name, port_nets): """Adds edges based on inputs/outputs. Overrides base class function.""" self.add_graph_edges(graph, port_nets)